Continued Fractions and Semiconvergents as approximations to rational numbers

A. Cortzen, ac.ga.ca by gmail.com

Abstract

There are several sources expanding the approximation theme and not so many about semiconvergents, and they are mostly without proofs. This note with proofs in turbo style is intended to cover a part of the subject.

Introduction

I may be well known that the convergents of a continued fraction representation of a real number gives astonishing good rational approximations; but others in a certain way best approximations exists. E. g. some convergents of π are $3,22 / 7,355 / 113$; but in between are other good approximations like $201 / 64,311 / 99$. There are several sources expanding the approximation theme and not so many about semiconvergents, and they are mostly without proofs. This note with proofs in turbo style is intended to cover a part of the subject.

Example. Let us look at $x=\exp (1 / 9)=1.1175190687418636486220597164816527772611027132027551 \ldots$
with continued fraction found by calculating $a_{0}=\lfloor x\rfloor=1$,
$y_{1}=1 /\left(x-a_{0}\right)=8.5092573546217307631832728 \ldots, a_{1}=\left\lfloor y_{1}\right\rfloor=8$
$y_{2}=1 /\left(y_{1}-a_{1}\right)=1.963643707694287511447893 \ldots, a_{2}=\left\lfloor y_{2}\right\rfloor=1$
$y_{3}=1 /\left(y_{2}-a_{2}\right)=1.037727940332534595949554 \ldots, a_{3}=\left\lfloor y_{3}\right\rfloor=1$
$y_{4}=1 /\left(y_{3}-a_{3}\right)=26.50555506571485100442367 \ldots, a_{4}=\left\lfloor y_{4}\right\rfloor=26$, etc.
Then this is collected in the continued fraction notation
$x=[1,8,1,1,26,1,1,44,1,1,62,1,1,80,1,1,98,1,1,116,1,1,134,1,1,152,1,1,170, \cdots]$
which means $x=1+1 /(8+1 /(1+1 /(1+1 /(26+\cdots))))$
Now the partial continued fractions gives
$[1]=1$,
$[1,8]=9 / 8$,
$[1,8,1]=10 / 9$,
$[1,8,1,1]=19 / 17$,
$[1,8,1,1,26]=504 / 451$, etc.
which are best approximations of form p / q to $\exp (1 / 5)$ of the so called second kind, where the measure of distance is $|p-x q|$. In the case $19 / 17$ this means that any other fraction r / s with $1 \leq s \leq 17$ has greater value of $|r-x s|$, than $|19-x \cdot 17|$.
The common measure of distance for approximations is of course $|x-p / q|$ and determines best approximations of first kind, which turns out to include the best approximations of second kind.
In the our example the first best approximations of the first kind fractions are
$1=[1]$,
$6 / 5=[1,5]$
$7 / 6=[1,6]$
$8 / 7=[1,7]$
$9 / 8=[1,8]$,
$10 / 9=[1,8,1]$,
$19 / 17=[1,8,1,1]$,
$257 / 230=[1,8,1,1,13]$
$276 / 247=[1,8,1,1,14]$ and consecutively for the last number up to
$504 / 451=[1,8,1,1,26]$, etc.
These fractions have strictly decreasing values of $|x-p / q|$. Also for any of these fractions p / q any other fraction r / s with $1 \leq s \leq q$
has greater value of $|r / s-x|$, than $|p / q-x|$.
Please observe $5 / 4=[1,4]$ is not included, as $|5 / 4-\exp (1 / 9)|>|1-\exp (1 / 9)|$; but $[1,8,1,1,13]$ is included.

Fundamental Facts about Continued Fractions

We have sometimes to distinguish between a continued fraction and its value, since the last not always determine the first.
Theorem. Define a simple finite continued fraction of order $N \geq 0$, as $x=\left[a_{0}, a_{1}, \ldots, a_{N}\right]$ with $a_{i} \geq 1$ for $i>0$, its value $\langle x\rangle=a_{0}+1 /\left(a_{1}+\ldots+1 / a_{N}\right)$ or just x, and its n 'th convergent $A_{n}=\left\langle\left[a_{0}, a_{1}, \ldots, a_{n}\right]\right\rangle$. Then

1. $A_{N}=\left[a_{0}, a_{1}, \ldots,\left[a_{r}, \ldots, a_{N}\right]\right]$
2. $\quad A_{N}$ is strictly decreasing in $a_{2 i+1}$ and strictly increasing in $a_{2 i}$, if present.

3a. $A_{0}<A_{2}<\ldots<A_{2 i}<\ldots \leq A_{2 i+1}<A_{2 i-1}<\ldots<A_{1}$
3b. $(-1)^{n} A_{n}<(-1)^{n} x \leq(-1)^{n} A_{n+1}$
4. $A_{n}=p_{n} / q_{n}$ for $n=0,1, \ldots, N$ with $p_{n}, q_{n} n \geq-2$ defined by
$\binom{p_{-2}}{q_{-2}}=\binom{0}{1}$ and $\binom{p_{n}}{q_{n}}=\left(\begin{array}{cc}a_{0} & 1 \\ 1 & 0\end{array}\right) \ldots\left(\begin{array}{cc}a_{n} & 1 \\ 1 & 0\end{array}\right)\binom{1}{0}$.
Thus $\binom{p_{-1}}{q_{-1}}=\binom{1}{0}$ and $\binom{p_{n}}{q_{n}}=\left(\begin{array}{cc}p_{n-1} & p_{n-2} \\ q_{n-1} & q_{n-2}\end{array}\right)\binom{a_{n}}{1}$.
5a. $p_{n+1} q_{n}-p_{n} q_{n+1}=(-1)^{n}$
5b. $A_{n+1}-A_{n}=(-1)^{n} /\left(q_{n} q_{n+1}\right)$ and $\left|x-A_{n}\right| \leq 1 /\left(q_{n} q_{n+1}\right)$
6. $A_{N}=A_{0}+\sum_{i=0}^{N-1}\left(A_{i+1}-A_{i}\right)=a_{0}+\sum_{i=0}^{N-1}(-1)^{i} /\left(q_{i} q_{i+1}\right)$
7. $\operatorname{gcd}\left(q_{n}, q_{n-1}\right)=\operatorname{gcd}\left(p_{n}, p_{n-1}\right)=\operatorname{gcd}\left(p_{n}, q_{n}\right)=1$
8. Let $n \geq 0$. Then $q_{n}=a_{n} q_{n-1}+q_{n-2}$ and $q_{-2}=1, q_{-1}=0, q_{0}=1$.

Furthermore $q_{n} \geq q_{n-1}$ and $q_{n} \geq F_{n+1}$, where the Fibbonnachi sequence $\left(F_{n}\right)$ is defined by $F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1$.
Let $\sigma=(1+\sqrt{5}) / 2=1.618 \ldots$ Then $F_{n}=\left(\sigma^{n}-(-\sigma)^{-n}\right) / \sqrt{5}$ and $q_{n} \geq\left\lfloor\sigma^{n+1} / \sqrt{5}+0.3\right\rfloor$
9. Suppose $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ is a simple finite continued fraction for all $n \geq 0$. Then $x=\left[a_{0}, a_{1}, \ldots, a_{n}, \ldots\right]$ is called a simple infinite continued fraction with order $N=\infty$ and, if $A_{n} \rightarrow x$ for $n \rightarrow \infty$, value $\langle x\rangle$ or just x.
This limit exists, and $x=a_{0}+\sum_{i=0}^{\infty}(-1)^{i} /\left(q_{i} q_{i+1}\right)=\left[a_{0}, a_{1}, \ldots,\left[a_{r}, \ldots, a_{n}, \ldots\right]\right]$
10. Define $x_{n}=\left[a_{n}, a_{n+1}, \ldots\right]$. Then $x=\left[a_{0}, a_{1}, \ldots, a_{n-1},\left\langle x_{n}\right\rangle\right]$
11. If $N>n$ then $(-1)^{n}\left(x-A_{n}\right)=\frac{1}{q_{n}\left(q_{n} x_{n+1}+q_{n-1}\right)}$ and

$$
q_{n}^{-2} / 2 \leq 1 /\left(q_{n}\left(q_{n}+q_{n-1}\right)\right) \leq\left|x-A_{n}\right| \leq 1 /\left(q_{n} q_{n+1}\right) \leq q_{n}^{-2}
$$

Proof: 1-2. (1) is obvious is and (2) follow by induction, as $A_{N}=\left[a_{0},\left[a_{1}, \ldots, a_{N}\right]\right]$.
3. By $(1,2)$ we get $\left[a_{n}\right]<\left[a_{n}, a_{n+1}\right] \Rightarrow A_{n}<x \leq A_{n} \Rightarrow(3 \mathrm{~b}),\left[a_{2 i-2}\right]<\left[a_{2 i-2}, a_{2 i-1}, a_{2 i}\right] \Rightarrow A_{2 i-2}<A_{2 i}$ and
$\left[a_{2 i-1}\right]<\left[a_{2 i-1}, a_{2 i}, a_{2 i+1}\right] \Rightarrow A_{2 i+1}<A_{2 i-1}$
4-6. Let $\left[a_{k}, \ldots, a_{N}\right]=r_{k} / s_{k}$. As $\left[a_{k}, \ldots, a_{N}\right]=a_{k}+1 /\left[a_{k+1}, \ldots, a_{N}\right] \Rightarrow r_{k} / s_{k}=\left(a_{k} r_{k+1}+s_{k+1}\right) / r_{k+1}$
we get $\binom{r_{k}}{s_{k}} \sim\left(\begin{array}{cc}a_{k} & 1 \\ 1 & 0\end{array}\right)\binom{r_{k+1}}{s_{k+1}}$ and thus $\binom{r_{0}}{s_{0}} \sim\left(\begin{array}{cc}a_{0} & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}a_{1} & 1 \\ 1 & 0\end{array}\right) \ldots\left(\left(\begin{array}{cc}a_{N} & 1 \\ 1 & 0\end{array}\right)\binom{1}{0}\right)$.
Now the trick is to define p_{n}, q_{n} as stated in (4) implying $A_{n}=p_{n} / q_{n}$,
$\left(\begin{array}{cc}p_{n} & p_{n-1} \\ q_{n} & q_{n-1}\end{array}\right)=\left(\begin{array}{cc}a_{0} & 1 \\ 1 & 0\end{array}\right) \ldots\left(\begin{array}{cc}a_{n} & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)\left(^{*}\right)$, and $\left(\begin{array}{cc}p_{n} & p_{n-1} \\ q_{n} & q_{n-1}\end{array}\right)=\left(\begin{array}{cc}p_{n-1} & p_{n-2} \\ q_{n-1} & q_{n-2}\end{array}\right)\left(\begin{array}{cc}a_{n} & 1 \\ 1 & 0\end{array}\right)$.
$\operatorname{By}(*) \operatorname{det}\left[\left(\begin{array}{cc}p_{n+1} & p_{n} \\ q_{n+1} & q_{n}\end{array}\right)\right]=(-1)^{n}$, and dividing this with $q_{n} q_{n+1}$ gives the next formula, from
which the remaining is obvious.
7. By (5a).
8. By (4) we have $q_{n}=a_{n} q_{n-1}+q_{n-2}$ and the first values. By induction is easily shown for $n \geq 0$
(i) $q_{n} \geq 1$, (ii) $q_{n} \geq q_{n-1}$, (iii) $q_{n+1} \geq q_{n}+q_{n-1}$, (iv) $q_{n} \geq F_{n+1}$.

The recurrence relation for F_{n} has characteristic polynomial $z^{2}-z-1$ with roots $\sigma,-\sigma^{-1}$ and the stated solution.
9. In the alternating series $\lim _{n \rightarrow \infty} 1 /\left(q_{n} q_{n+1}\right)=0$ by (8), and (6) implies the limit statement. Finally (1) and continuity of
$z \rightarrow\left[a_{0}, a_{1}, \ldots, z\right]$ gives the remaining.
10. By $(1,9,4)$
11. As $(-1)^{n}\left(x-A_{n}\right)=(-1)^{n}\left(\frac{p_{n} x_{n+1}+p_{n-1}}{q_{n} x_{n+1}+q_{n-1}}-\frac{p_{n}}{q_{n}}\right)=\frac{1}{q_{n}\left(q_{n} x_{n+1}+q_{n-1}\right)}$
and $\frac{1}{q_{n}\left(q_{n}+q_{n-1}\right)} \leq \frac{1}{q_{n}\left(q_{n} x_{n+1}+q_{n-1}\right)} \leq \frac{1}{q_{n} q_{n+1}}$

Corollary. For simple continued fractions $\left[a_{0}, a_{1}, \ldots, a_{n}, \ldots\right]=\left[b_{0}, b_{1}, \ldots, b_{n}, \ldots\right]$ of orders N and $M \geq N$ respectively holds

1. If the continued fractions are not identical, then $(\infty>M=N+1) \wedge\left(a_{N}=b_{M-1}+1\right) \wedge\left(b_{M}=1\right)$ and $a_{n}=b_{n}$ for $n<N$.

Now for finite continued fractions let normal form be characterized by $(N=0) \bigvee\left(a_{N}>1\right)$ and long form by the opposite condition $(N>0) \wedge\left(a_{N}=1\right)$. Let also normal form cover infinite simple integer continued fractions. Then
2. A finite simple integer continued fraction represents a rational number, which can be represented in precisely two different ways.

A normal form, that can be cast into long form by $\left[a_{0}, \ldots, a_{N}\right] \rightarrow\left[a_{0}, \ldots, a_{N}-1,1\right]$ and converse.

Proof: Assume the continued fractions are not identical. Let $m=\min \left\{k \mid a_{k} \neq b_{k}\right\}$, and set $y_{k}=\left[b_{k}, b_{k+1}, \ldots\right]$.
By theorem $1(10,2) x_{m}=y_{m}$. Now three cases remain.
(i) $N, M \geq m+1$. As $\left[a_{m}, x_{m+1}\right]=\left[b_{m}, y_{m+1}\right]$ we have a contradiction by
$a_{m}-b_{m}=1 / y_{m+1}-1 / x_{m+1} \in(-1,1) \Rightarrow a_{m}=b_{m}$.
(ii) $N=M=m$ implying $a_{m}=b_{m}$, a contradiction.
(iii) $N=m \bigwedge M=m+1$. We get $a_{m}=\left[b_{m}, b_{m+1}\right] \Leftrightarrow a_{m}=b_{m}+1 / b_{m+1} \Leftrightarrow a_{m}=b_{m}+1 \bigwedge b_{m+1}=1$.

Thus $(M>0) \wedge\left(b_{M}=1\right)$, while $N>0 \Rightarrow a_{N}>1$.
The remaining is obvious.

Corollary. Assume x is in normal form, $0 \leq n<N$ and $\Delta_{k}=x q_{k}-p_{k}=\left(x-A_{k}\right) q_{k}$. Then

1. $0 \leq(-1)^{n+1} \Delta_{n+1}<(-1)^{n} \Delta_{n}$
2. $0 \leq(-1)^{n}\left(A_{n+1}-x\right)<(-1)^{n}\left(x-A_{n}\right)$

Proof: As all is evident, if $x=A_{n+1}$, assume $x \neq A_{n+1}$, i.e. $N>n+1$.
By normal form assumption $x_{n+2}>1$ and $x_{n+1}=\left[a_{n+1}, x_{n+2}\right]<a_{n+1}+1$.
According to theorem 1 (11) only the sharp inequalities remain and by further use:

1. For $d=(-1)^{n} \Delta_{n}-(-1)^{n+1} \Delta_{n+1}=\left(q_{n+1} x_{n+2}+q_{n}\right)-\left(q_{n} x_{n+1}+q_{n-1}\right)$ we get
$d>\left(q_{n+1}+q_{n}\right)-\left(q_{n} a_{n+1}+q_{n}+q_{n-1}\right)=0$
2. Set $h=(-1)^{n}\left(\left(x-A_{n}\right)-\left(A_{n+1}-x\right)\right)$. Then $h=q_{n+1}\left(q_{n+1} x_{n+2}+q_{n}\right)-q_{n}\left(q_{n} x_{n+1}+q_{n-1}\right)$
and as in (1) $h>q_{n+1}\left(q_{n+1}+q_{n}\right)-q_{n}\left(q_{n+1}+q_{n}\right)=q_{n+1}^{2}-q_{n}^{2} \geq 0$.

The next theorem is only needed to give a special form of a later condition for best-convergents.
Theorem. Define polynomials $P_{n}\left(a_{0}, \ldots, a_{n}\right)$ and $Q_{n}\left(a_{0}, \ldots, a_{n}\right)$ by
$\binom{P_{-2}}{Q_{-2}}=\binom{0}{1}$ and $\binom{P_{n}}{Q_{n}}=\left(\begin{array}{cc}a_{0} & 1 \\ 1 & 0\end{array}\right) \ldots\left(\begin{array}{cc}a_{n} & 1 \\ 1 & 0\end{array}\right)\binom{1}{0}$ for $n \geq-1$
Then

1. $\left(\begin{array}{ll}P_{n} & P_{n-1} \\ Q_{n} & Q_{n-1}\end{array}\right)=\left(\begin{array}{cc}a_{0} & 1 \\ 1 & 0\end{array}\right) \ldots\left(\begin{array}{cc}a_{n} & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$ for $n \geq-1$
2. $P_{n}\left(a_{0}, \ldots, a_{n}\right)=P_{n}\left(a_{n}, \ldots, a_{0}\right)$ for $n \geq-1$
$Q_{n}\left(a_{n}, \ldots, a_{0}\right)=P_{n-1}\left(a_{0}, \ldots, a_{n-1}\right)$ for $n \geq 0$
3. $Q_{n}\left(a_{0}, \ldots, a_{n}\right)=P_{n-1}\left(a_{1}, \ldots, a_{n}\right)$ for $n \geq 0$
4. $\left[a_{0}, \ldots, a_{n}\right]=P_{n}\left(a_{0}, \ldots, a_{n}\right) / P_{n-1}\left(a_{1}, \ldots, a_{n}\right)$ for $n \geq 0$
5. $Q_{n+1}\left(a_{0}, \ldots, a_{n+1}\right) / Q_{n}\left(a_{0}, \ldots, a_{n}\right)=\left[a_{n+1}, \ldots, a_{1}\right]$ for $n \geq 0$

Proof: Direct verifications for the lowest values of n are necessary and assumed.

1. As $\binom{P_{n-1}}{Q_{n-1}}=\left(\begin{array}{cc}a_{0} & 1 \\ 1 & 0\end{array}\right) \ldots\left(\begin{array}{cc}a_{n} & 1 \\ 1 & 0\end{array}\right)\binom{0}{1}$ for $n \geq 0$
2. By transposing (1), which gives $\left(\begin{array}{cc}P_{n} & Q_{n} \\ P_{n-1} & Q_{n-1}\end{array}\right)=\left(\begin{array}{cc}a_{n} & 1 \\ 1 & 0\end{array}\right) \ldots\left(\begin{array}{cc}a_{0} & 1 \\ 1 & 0\end{array}\right)$
3. From (2)
4. From (3)
5. $Q_{n+1}\left(a_{0}, \ldots, a_{n+1}\right) / Q_{n}\left(a_{0}, \ldots, a_{n}\right)=P_{n}\left(a_{1}, \ldots, a_{n+1}\right) / P_{n-1}\left(a_{1}, \ldots, a_{n}\right)=$ $P_{n}\left(a_{n+1}, \ldots, a_{1}\right) / P_{n-1}\left(a_{n}, \ldots, a_{1}\right)=\left[a_{n+1}, \ldots, a_{1}\right]$ the last by (4)

Construction of Continued Fractions

Theorem. Construct for $y \in \mathbb{R}$ a simple integer continued fraction expansion $x=\left[a_{0}, a_{1}, \ldots, a_{n}, \ldots\right]$ by induction:

$$
\begin{aligned}
& y_{0}=y, a_{0}=\lfloor a\rfloor \\
& \text { if } y_{0}>a_{0}: y_{1}=1 /\left(y_{0}-a_{0}\right), a_{1}=\left\lfloor y_{1}\right\rfloor, \ldots \\
& \text { if } y_{n}>a_{n}: y_{n+1}=1 /\left(y_{n}-a_{n}\right), a_{n+1}=\left\lfloor y_{n+1}\right\rfloor \ldots
\end{aligned}
$$

As x now is defined the previous notation and results may be applied. We have

1. The construction never gives long form, and all $a_{n+1} \geq 1$.a
2. $y=\left[a_{0}, \ldots, a_{n-1}, y_{n}\right]$ and $y_{n}=\left\langle x_{n}\right\rangle$ or just $y_{n}=x_{n}$ by theorem 1 (10)
3. If $y_{n}=a_{n}$, then the expansion ends and $\langle x\rangle=A_{n}$.

Otherwise the expansion is infinite and $y=\langle x\rangle$

Proof: 1 . As $0<y_{n}-\left\lfloor y_{n}\right\rfloor<1 \Rightarrow y_{n+1}>1 \bigwedge a_{n+1} \geq 1$ and $y_{n+1} \in \mathbb{Z} \Rightarrow a_{n+1} \geq 2$.
2. From $y=\left[y_{0}\right]$ and $y_{n+1}=1 /\left(y_{n}-a_{n}\right) \Leftrightarrow y_{n}=\left[a_{n}, y_{n+1}\right]$, we have
$y=\left[a_{0}, \ldots, a_{n-1}, y_{n}\right] \Rightarrow y=\left[a_{0}, \ldots, a_{n-1}, a_{n}, y_{n+1}\right]$, and by theorem 1 (10) $y_{n}=\left\langle x_{n}\right\rangle$
3. For an infinite expansion Theorem $1(3,5 b)$ gives $\lim _{n \rightarrow \infty} A_{2 n} \leq x \leq \lim _{n \rightarrow \infty} A_{2 n+1}$ and $\lim _{n \rightarrow \infty} A_{n}=x$

Convergents

Assume in this paragraph that $x=\left[a_{0}, a_{1}, \ldots, a_{n}, \ldots\right], n \geq 0$ is a simple integer continued fraction in normal form.

Theorem (Lagrange). Let $p, q \in \mathbb{Z} \bigwedge 1 \leq q \leq q_{n} \bigwedge n \geq 1 \bigwedge p / q \neq A_{n}$. Then

1. $\left|p_{n-1}-x q_{n-1}\right| \leq|p-x q|$, where equality only holds for $p / q=A_{n-1}$
2. $\left|A_{n}-x\right|<|p / q-x|$

Proof: The equations $q=y q_{n}+z q_{n-1}$ and $p=y p_{n}+z p_{n-1}$ has determinant $(-1)^{n}$ and solution $y=(-1)^{n}\left(q p_{n-1}-p q_{n-1}\right)$ and $z=(-1)^{n}\left(p q_{n}-q p_{n}\right)$, where $y, z \in \mathbb{Z}$. Now $y z \leq 0$ since otherwise $|q| \geq\left|q_{n}\right|+\left|q_{n-1}\right|$. Also $z \neq 0$, as $z=0 \Rightarrow p / q=A_{n}$. If $y=0$, then $p / q=A_{n-1}$, the limit case. For $y, z \neq 0$ by $x q-p=y \Delta_{n}+z \Delta_{n-1}$ and sign considerations, $|x q-p| \geq\left|\Delta_{n}\right|+\left|\Delta_{n-1}\right|>\left|\Delta_{n-1}\right|$.
Finally (2) follows from $|p / q-x| q \geq\left|\Delta_{n-1}\right|>\left|\Delta_{n}\right|=\left|A_{n}-x\right| q_{n} \geq\left|A_{n}-x\right| q$.

Corollary. If $x=p / q \in \mathbb{Q}$ the continued fraction is finite.

Proof: If it is infinite choosing A_{n} with $q_{n}>q$ gives a contradiction to the theorem 4 (2).

Definition. Let $p, q, r, s \in \mathbb{Z} \bigwedge 1 \leq q, s$. Then
p / q is a best approximation of second kind to x, if $s \leq q \Rightarrow(|p-x q|<|r-x s| \bigvee p / q=r / s)$
Obviously a best p / q is irreducible.
In the case $q=1$ we have (i) $x-a_{0}<1 / 2 \Rightarrow a_{0}$ best,
(ii) $x-a_{0}=1 / 2 \Rightarrow$ no best, (iii) $x-a_{0}>1 / 2 \Rightarrow a_{0}+1$ best

Theorem. Let $p, q \in \mathbb{Z}, 1 \leq q$. Then
p / q is a best approximation of second kind to $x \Leftrightarrow p / q$ is a convergent to x.

Proof: \Rightarrow : As $q_{n-1} \leq q<q_{n}$ for some $n \geq 1$, using the approximation condition with $r=p_{n-1}, s=q_{n-1}$ implies $p / q=r / s$ by theorem 4 (1).
\Leftarrow : From Lagrange's theorem 4 (1) with $p=r \wedge q=s$ follows
$\left|p_{n}-x q_{n}\right|=\left|\Delta_{n}\right|<\left|\Delta_{n-1}\right| \leq|r-x s|$ for $1<s \leq q_{n} \bigwedge r / s \neq A_{n}$.
This shows A_{n} with $n \geq 1$ is a best approximation of second kind.

Example. $7 / 9$ has convergents $0=[0], 1=[0,1], 3 / 4=[0,1,3], 7 / 9=[0,1,3,2]$
and the last three as best approximations of second kind.
If long form is used, then $7 / 9=[0,1,3,1,1]$ has convergents

$$
3 / 4=[0,1,3], 4 / 5=[0,1,3,1] ; \text { but }|3-(7 / 9) \cdot 4|=|4-(7 / 9) \cdot 5|=1 / 9
$$

which shows that $4 / 5$ is not a best approximation of second kind.

Semiconvergents and Best-convergents

In this paragraph $x=\left[a_{0}, a_{1}, \ldots, a_{n}, \ldots\right], n \geq 0$ need not to be in normal form.

Lemma. For $y, z \geq 0,(n, y) \neq(0,0),(n, z) \neq(0,0)$ define
$p_{n, z}=p_{n} z+p_{n-1}, q_{n, z}=q_{n} z+q_{n-1}$ and $A_{n, z}=p_{n, z} / q_{n, z}$.
Then $A_{n, z}-A_{n, y}=(-1)^{n}(y-z) /\left(q_{n, y} q_{n, z}\right)$ and $A_{n, y}-A_{n}=(-1)^{n} /\left(q_{n, y} q_{n}\right)$
Furthermore $y>0 \Rightarrow A_{n, y}=\left[a_{0}, \ldots, a_{n}, y\right]$ and $A_{n+1,0}=A_{n}=A_{n-1, a_{n}}$, if defined.

Proof: $A_{n, z}-A_{n, y}=\frac{p_{n, z}}{q_{n, z}}-\frac{p_{n, v}}{q_{n, y}}=\frac{(y-z)\left(p_{n-1} q_{n}-p_{n} q_{n-1}\right)}{q_{n, y} q_{n, z}}=\frac{(-1)^{n}(y-z)}{q_{n, y} q_{n, z}}$
The next follows likewise, and the remaining by theorem 1.

We now collect some inequalities in the next lemma
Lemma. 1. For $y>z \geq 0,(n, z) \neq(0,0)$ holds $(-1)^{n} A_{n, y}<(-1)^{n} A_{n, z}$
2. $(-1)^{n} A_{n}<(-1)^{n} x \leq(-1)^{n} A_{n+1}=(-1)^{n} A_{n, a_{n+1}}<\ldots<(-1)^{n} A_{n, 1}$

Proof: Follows easily from theorem 1 and lemma 1.

Theorem. Suppose $m \in\left\{1, \ldots, a_{n+1}\right\}$.
Define a best-convergent $A_{n, m}$ as those fractions, for which $\left|A_{n, m}-x\right|<\left|A_{n}-x\right|$ and $q_{n, m} \geq 2$. Then we have

1. $\left|A_{n, m}-x\right|<\left|A_{n}-x\right| \Leftrightarrow x_{n+1}<2 m+q_{n-1} / q_{n}$.
2. Long and for normal form gives the same total set of best-convergents.
3. The best-convergents values $\left|A_{n, m}-x\right|$ are strictly lexicographic opposite ordered:

$$
\left|A_{k, i}-x\right|>\left|A_{n, m}-x\right| \Leftrightarrow(k<n) \bigvee(k=n \bigwedge i<m)
$$

Proof: 1. $A_{n, m}-x=A_{n, m}-A_{n, x_{n+1}}=(-1)^{n}\left(x_{n+1}-m\right) /\left(q_{n, m} q_{n, x_{n+1}}\right)$
Hence $\left|A_{n, m}-x\right|<\left|A_{n}-x\right| \Leftrightarrow$
$\frac{x_{n+1}-m}{q_{n, m}\left(q_{n} x_{n+1}+q_{n-1}\right)}<\frac{1}{q_{n}\left(q_{n} x_{n+1}+q_{n-1}\right)} \Leftrightarrow x_{n+1}<2 m+\frac{q_{n-1}}{q_{n}}$
2. In $x=\left[a_{0}, a_{1}, \ldots, a_{N}-1,1\right]=\left[b_{0}, b_{1}, \ldots, b_{N+1}\right]$ we may suppose $N \geq 1$.

Best-convergents of the long form are denoted $B_{n, m}$. If $n \leq N-1$ we get the same as before, except $A_{N-1, a_{N}}$ is missing, but this fraction is just $B_{N, 1}$.
3. By last lemma $i<m \Rightarrow\left|A_{n, m}-x\right|<\left|A_{n, i}-x\right|$ and
$k<n \Rightarrow\left|A_{n, m}-x\right|<\left|A_{n}-x\right| \leq\left|A_{k+1}-x\right|=\left|A_{k, a_{k+1}}-x\right| \leq\left|A_{k, i}-x\right|$

Corollary. Let $m \in \mathbb{Z}_{+}$and $m \in\left\{1, \ldots, a_{n+1}\right\}$. Then

1. (i) $m>a_{n+1} / 2 \Rightarrow A_{n, m}$ is a best-convergent
(ii) For $m=a_{n+1} / 2: A_{n, m}$ is a best-convergent $\Leftrightarrow x_{n+1}<q_{n+1} / q_{n} \Leftrightarrow\left[a_{n+1}, a_{n+2}, \ldots\right]<\left[a_{n+1}, \ldots, a_{1}\right]$.
(iii) $m<a_{n+1} / 2 \Rightarrow A_{n, m}$ is not a best-convergent
2. Set $\beta_{n}=\left\{\begin{array}{ll}a_{n+1} / 2, \text { if } a_{n} \text { is even and } x_{n+1}<q_{n+1} / q_{n} \\ \left\lfloor\left(a_{n+1}+1\right) / 2\right\rfloor & \text { otherwise }\end{array}\right.$. Then
$A_{n, m}$ is a best-convergent $\Leftrightarrow m \in\left\{\beta_{n}, \ldots, a_{n+1}\right\}$

Proof: 1. Follows easily from expressing theorem 6 (1) in cases:
(i) If $a_{n+1} \leq 2 m-1$ then $x_{n+1}<a_{n+1}+1 \leq 2 m+q_{n-1} / q_{n}$, thus $\left|A_{n, m}-x\right|<\left|A_{n}-x\right|$
(ii) If $a_{n+1}=2 m$ then $\left|A_{n, m}-x\right|<\left|A_{n}-x\right| \Leftrightarrow$
$x_{n+1}<a_{n+1}+q_{n-1} / q_{n} \Leftrightarrow x_{n+1}<\left(q_{n} a_{n+1}+q_{n-1}\right) / q_{n} \Leftrightarrow x_{n+1}<q_{n+1} / q_{n}$
The last follows from theorem 1 (10) and theorem 2 (5)
(iii) As $a_{n+1} \geq 2 m+1 \Rightarrow x_{n+1} \geq 2 m+1$, we get $\left|A_{n, m}-x\right| \geq\left|A_{n}-x\right|$
2. Using (1) and setting β_{n} to the lowest m, for which $A_{n, m}$ is a best-convergent

Lemma. Let $m \geq 1,(n, m) \neq(0,1)$ and $p, q \in \mathbb{Z}, q \geq 1$.

1. If $(-1)^{n} A_{n, m}<(-1)^{n} p / q<(-1)^{n} A_{n, m-1}$, then $q>q_{n, m}$
2. If $(-1)^{n} A_{n}<(-1)^{n} p / q<(-1)^{n} A_{n, m}$, then $q>q_{n, m}$

Proof: We shall use lemma 1 and lemma 2.

1. From $0<\left|A_{n, m-1}-p / q\right|<\left|A_{n, m}-A_{n, m-1}\right|=1 /\left(q_{n, m-1} q_{n, m}\right)$ follows
$0<\left|q p_{n, m-1}-p q_{n, m-1}\right|<q / q_{n, m}$. Hence $1<q / q_{n, m}$.
2. As $A_{n}=\lim _{m \rightarrow \infty} A_{n, m}$ monotonically, we get for some $k \geq m+1$ that $(-1)^{n} A_{n, k} \leq(-1)^{n} p / q<(-1)^{n} A_{n, k-1}$.

Thus $q \geq q_{n, k}>q_{n, m}$.

Corollary. Let $A_{n, m}$ be a best-convergent, $p, q \in \mathbb{Z}, 1 \leq q \leq q_{n, m}$.
Then $\left|A_{n, m}-x\right| \leq|p / q-x|$, where equality only holds for $p / q=A_{n, m}$.

Proof: The proof is done by the cases
(i) $(-1)^{n} p / q \leq(-1)^{n} A_{n}$, giving $\left|A_{n, m}-x\right|<(-1)^{n}\left(x-A_{n}\right) \leq(-1)^{n}(x-p / q)$
(ii) $(-1)^{n} A_{n}<(-1)^{n} p / q<(-1)^{n} A_{n, m}$, giving $q>q_{n, m}$
(iii) $(-1)^{n} A_{n, m}<(-1)^{n} p / q$, implying $0 \leq(-1)^{n}\left(A_{n, m}-x\right)<(-1)^{n}(p / q-x)$
(iv) $(-1)^{n} A_{n, m}=(-1)^{n} p / q$

Definition. Let $p, q, r, s \in \mathbb{Z} \wedge 1 \leq q, s$ and $p / q \neq r / s$. Then
p / q is a best approximation of first kind to x, if $s \leq q \Rightarrow|p / q-x|<|r / s-x|$
Obviously a best p / q is irreducible.
In the case $q=1$ the result is the same as for second kind (i) $x-a_{0}<1 / 2 \Rightarrow a_{0}$ best,
(ii) $x-a_{0}=1 / 2 \Rightarrow$ no best, (iii) $x-a_{0}>1 / 2 \Rightarrow a_{0}+1$ best

Theorem. Let $p, q \in \mathbb{Z}, 2 \leq q$ and p / q irreducible. Then
p / q is a best approximation of first kind to $x \Leftrightarrow p / q$ is a best-convergent to x

Proof: \Leftarrow : Let $p / q=A_{n, m}$ be a best-convergent and $s \leq q_{n, m}$. Then by the corollary
$r / s \neq A_{n, m} \Rightarrow\left|A_{n, m}-x\right|<|r / s-x|$. This shows $A_{n, m}$ is a best approximation of first kind.
\Rightarrow : 1. Assume p / q is not a semiconvergent or a convergent. As $A_{0}=a_{0} \leq x<A_{0,1}=a_{0}+1$, the cases $p / q<a_{0}$ and
$p / q>a_{0,1}=a_{0}+1$ are impossible because one of $A_{0}, A_{0,1}$ are closer to x than p / q and has denominator 1. From lemma 2
$A_{0}=A_{1,0}<A_{1,1} \ldots<A_{1, a_{2}}=A_{2}=A_{3,0}<A_{3,1}<\ldots x \ldots<A_{2,1}<A_{2,0}=A_{1}=A_{0, a_{1}}<\ldots<A_{0,1}$
follows $(-1)^{n} x \leq(-1)^{n} A_{n, m}<(-1)^{n} p / q<(-1)^{n} A_{n, m-1}$ for some n, m, and $m=1$ is allowed, if $n>0$. This is the main trick.
It implies $\left|A_{n, m}-x\right| \leq|p / q-x|$, and also by lemma 3 (1) $q>q_{n, m}$, which gives a contradiction, if $r / s=A_{n, m}$ is used in the definition of best approximation
2. By (1) p / q is a semiconvergent or a convergent, and $p / q=A_{n, m}$ for some n, m, as $q \geq 2$.

If $p / q=A_{n, m}$, we have $\left|A_{n, m}-x\right|<\left|A_{n}-x\right|$, as p / q is a best approximation. Hence p / q is a best-convergent.

Example. $x=(1+\sqrt{2}) / 2=[1,4,1,4,1,4, \ldots]$ has best-convergents
$1=[1], 4 / 3=[1,3], 5 / 4=[1,4], 6 / 5=[1,4,1], 23 / 19=[1,4,1,3] \ldots$.
Furthermore $17 / 14=[1,4,1,2]$ is not a best approximation of first kind, as
$|17 / 14-x|>0.00717>0.00711>|6 / 5-x|$
This is confirmed using theorem (1.ii), as $[4,1,4,1,4, \ldots]>[4,1,4]$.

References

[1] Oskar Perron, Die Lehre von den Kettenbrüchen (Teubner 1913)
http://www.archive.org/details/dielehrevondenk00perrgoog

