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Abstract

This is a simple way rigorously to construct Grassmann, Clifford and Geometric Algebras, allowing

degenerate bilinear forms, infinite dimension, using fields or modules (characteristic 2 with limita-

tions for certain Clifford algebras), and characterize the algebras in a coordinate free form. 

The construction is done in an orthogonal basis, and the algebras characterized by universality.

Most properties are with short proofs provides a clear foundation for application of the algebras.

A comprehensive formula collection is established.

Various conditions for non-universality are established. For such algebras conditions for reversion

and Clifford conjugation are found.

Some properties or proofs might be new in this context, e.g. factor expansion and parallel projection.
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Often proof of the existence of Grassmann or Clifford algebras are bypassed, or Chevalley’s tensor

approach is taken. Pure mathematical books may present a lot of structures before coming to these

algebras [2,3,5]. Here a direct approach is described.

Preliminaries

Our  starting-point  may  e.g.  be  the  real  number  field  ,  a  linear  space  V = n  with  basis

e1 = (1, 0, …0), e2 = (0, 1, …0)…, and indices M = {1, 2, …, n} usually ordered by <.  Also used is

a quadratic mapping q(i) = B(ei, ei),  where B  is  a bilinear form on V  with diagonal form in the

basis (ei i ∈ M).

The basic idea behind Grassmann and Clifford algebras is, that products may give new elements, e.g. e1 e2 = e{1,2}. Here a common

construction will cover both algebras. 

In n  the new product should fulfill generator equations e1 e2 = -e2 e1, ei ei = q(ei) ∈  and be associative. Then a product may be

reordered and reduced to get a standard form without repetitions, as in

  e{1,2} e3 e1 e2 = -e1 e2 e1 e3 e2 = e1 e1 e2 e3 e2 = -e1 e1 e2 e2 e3 = -q(e1) q(e2) e3

The product properties gives a dimension ≤ 2n, as there are 2n subsets of M. 

The first goal of the algebra construction is to equip W = 2n
 with a Clifford product.

A basis for W  is (eK K ⊆ M). Submodules of W are the scalars R e∅  and V  by identifying ei  with

e{i}. 

Sets  as  indices  gives  a  compact  construction.  It  can  indeed  be  used  together  with  multiindex:

e4 e3 e5 = e(4,3,5) = -e{4,3,5} = -e{3,4,5}.  

Also allowed  e43 = -e34 = -e{3,4}, when misunderstanding is not probable.

Conventions

The following notation and definitions will be used. An algebra A  is a linear space equipped with a

bilinear and associative composition having a unit 1A. An algebra morphism is supposed to map unit

to unit. All the algebras are over the same set of scalars, R. Silently x, y will be elements in a linear

space V  and X , Y elements in the algebra at hand.  

The cardinality of  the set  K is denoted K.  Multiindices are always subsets  taken from a totally

ordered set, and as such totally ordered. 

For a index set H we use k < H in the meaning ∀ h ∈ H(k < h), implying k < ∅ is true. 

A product for increasing indices is marked with ↑ and decreasing with ↓. 

Moreover ↑ and ∈ may be omitted like in Πi∈I, ai = ΠI ai. 

H △ J = (H ⋃ J) \(H ⋂ J) is the symmetric set difference, which is associative.
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Definition of a Clifford algebra

To make the exposition general we may assume

1.   is a commutative ring of scalars with unit 1 ≠ 0, and ⨯ = \{0} . Small Greek characters have

usually scalar values.

2.  V  is a free unitary left -module

3.  B : V ⨯V →  is a bilinear form with diagonal form in the basis (ei i ∈ M),  q(ei) = B(ei, ei) and

M is totally ordered by a relation < .

4.  W = ⊕ℱ , where ℱ is the set of finite subsets of index set M. 

The standard basis for W  is (eK K ∈ ℱ ). By identifying ei with e{i} we consider V a submodule of

W.

The scalars  e∅ are identified with  where it does not give problems.
NB: V = {0} ⇒ W =  e∅ = 

NB: Instead of W  any other free unitary -module with ΠK ek K ∈ ℱ  as basis can be used.

NB: If  is a field with characteristic different from 2, and V  has finite dimension, then any symmetric bilinear form on V  has an

orthogonal basis.

Definition 1.1. A Clifford algebra U over B, is an algebra containing V, such that 

1.  ∀x∈V : x2 = B(x, x) 1U

2.  V  generates U

3.  V ⋂  1U = {0}.

Let (V , B) be the category of  Clifford algebras over B.

U is called (initial-) universal in (V , B), if

4.   Any linear mapping f : V → A into an algebra A,  such that  f (x)2 = B(x, x) 1A,  has a unique

extension to algebra morphism F : U → A. This extension is called the universal extension.

Theorem  1.2.  Assume  algebras  Ui  are  universal  in  (Vi, Bi),  f : V1 → V2  is   -linear  and

f : V1 → V2 is  -linear.

Then f has a unique extension, F : U1 → U2 to an algebra morphism, which is an isomorphism, if f

is bijective. 

Proof: Universality gives a unique extension of f : V1 → U2 to an algebra morphisms  F : U1 → U2.

If f is bijective, then from f -1 we likewise get G : U2 → U1. 

As  F∘G is identity on V2, uniqueness of extension by universality implies idU2 = F∘G, and likewise

idU1 = G∘F. Thus F and G are isomorphisms.

Now the following two corollaries are obvious.
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Corollary 1.3. An universal algebra in (V , B)  is uniquely determined aside from isomorphisms

fixing V.

Corollary 1.4. Assume algebras Ui are universal in (Vi, Bi) and fi : Vi → Vi+1 is  -linear.

Let Fi : Ui → Ui+1 be the unique extensions to algebra morphisms.

Then the unique extension of fk ∘…∘ f1  to an algebra morphism is  Fk ∘…∘ F1.

Chapter 2  Construction of a universal Clifford algebra

Construction  

The construction needs help functions α,  β.  If  H , J  are index sets,  then ordering the list  concatenation of H and J  ascending by

swapping neighbors contributes a factor to α of -1 each time. It can be done successively starting in the highest end of H comparing

for swapping from the lowest end of J. This gives the factor α(H , J). Then identical neighbors is multiplied and removed, which

gives a factor q(ei) absorbed in β.

Definition 2.1. Let for sets H, J ∈ ℱ  

                  α(H, J ) = Π (-1) for (h, j) ∈ H ⨯J and h > j   

                  β(H, J ) = Π q(ei) for i ∈ H ⋂ J  , 

                  σ = α β 
NB: Allowed here is to use a single element i in M, instead of the set {i}.                  

Proof of existence of a Clifford algebra over B.

Theorem 2.2. Define a product (X , Y) → X Y in W by eH eJ = σ(H, J) eH △ J and bilinearity.  

Then W becomes a Clifford algebra in (V , B).

Proof: In definition 1.1 properties 2-3 are true by construction. Now to property 1. 

As the associative law (x y) z = x (y z) is multilinear, it needs only be verified for basis elements:

                  (eH eJ) eK = σ(H, J) eH △ J eK = σ(H, J)σ(H △ J , K) e(H △ J) △ K ,

                  eH (eJ eK) = σ(J , K) eH eJ △ K = σ(H, J △ K)σ(J , K) eH △ (J △ K)  

Equality of the two expression follow from Δ being associative, and the lemma below.

As e∅ eK = σ∅, K eK = eK = σK, ∅ eK = eK e∅, we get  e∅ = 1W = 1.

Moreover  and   ei ei = σ(i, i) e∅ = q(ei) e∅  and   i < j ⇒ (ei e j = σ(i, j) e{i, j} = e{i, j}  and

ej ei = -e{i, j} = -ei e j). 

Hence  x = Σi λi ei  imply  x2 = Σi, j λi λ j ei e j = Σ λi
2 ei

2  and  finally

B(x, x) = Σi, j λi λ j B(ei, ej) = Σ λi
2 B(ei, ei) = Σ λi

2 ei
2 = x2. 
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Lemma 2.3.     σ(H, J )σ(H △ J , K) = σ(H, J △ K)σ(J , K), 

Proof: As α2 = 1 we get α(H △ J , K) = α(H\J , K) α(J \H, K) α (J ⋂ H, K)2 = α(H, K) α(J , K)

and likewise α(H, J △ K) = α(H, J) α(H, K). Thus the equation is obvious for the α-part of σ.

Using the temporary notation like  K = M\K and [HJK] for the product of q(ei) for i ∈ H ⋂ J ⋂ K,

then 

β(H, J ) = [HJK]HJ K,  and

β(H, J ) β(H △ J , K) = [HJK]HJ KH J KH JK = β(H, J △ K) β(J , K). 

  

Corollary 2.4. eI = Π I ei.

Proof: Use induction and H < j ⇒ eH ej = σ(H, { j}) eH⋃{ j} = eH⋃{ j}.

Proof of existence of a universal Clifford algebra over B.

Theorem  2.5. 1. W is universal in (V , B).

Hence W is uniquely determined by universality in (V , B) aside from isomorphism.

W is denoted ℓ(B, V ) or ℓ(B). 

2. If (ai i ∈ M′) be an orthogonal basis for V, then (aK K ⊆ M′, K finite) is a basis for ℓ(B, V ).

3. The Clifford product is independent of selection of orthogonal basis, if the product is constructed

in ℓ(B, V ). 

Proof: 1. We shall prove that to any algebra A over  and any linear mapping f : V → A such that

f (x)2 = B(x, x) 1A, there exists a unique algebra morphism F : W → A that extends f.

Therefore define a linear mapping F : W → A necessarily by F(e∅) = 1A, and F(eK) = Π k∈K f (ek).

For i ≠ j and x = ei + ej, we get f (x)2 = B(x, x) 1A ⇒ f (ei) f (ej) = - f (ej) f (ei) by expansion.

Let  H = {h1, …, hp}  and  K = {k1, …, kq}  with  increasing  indices.  Then

F(eH) F(eK) = f (eh1)… f (ehp) f (ek1)… f (ekq).

If hp > k1, then f (ek1) is swapped with f (ehp), and so on for decreasing h-indices. 

This  is  compensated with a  factor  α(H, k1).  Reducing for  two identical  elements  gives  a  factor

β(H, k1). 

The same proces is next done with f (ek2), and this continues until f (ekq). The total factor becomes

σ(H, K).

Thus F(eH) F(eK) = σ(H, K) F(eH △ K) = F(eH eK). 

2. Construct a new Clifford algebra ℓ(B, V )′  from the basis (ai). Then (aK K ⊆ M′, K finite) is a

basis for ℓ(B, V )′.

By corollary 1.3 there exists a unique algebra isomorphism F : ℓ(B, V )′ → ℓ(B, V ) fixing V. 

Therefore, as (F(aK)) = (ΠK F(ak)) = (aK), we get (aK K ⊆ M′, K finite) is a basis for ℓ(B, V ).

3.  The construction of  ℓ(B, V )′  can be  transferred by F  to  ℓ(B, V ).  By this  isomorphism the
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Clifford product in ℓ(B, V )′ is transferred to that of ℓ(B, V ).
NB: In proofs it is often a simplification to use W for ℓ(B, V ) 

Definition 2.6. Let  p,q,r be a real vector space of dimension n = p+ q+ r with a symmetric bilinear-

form  B that  in  diagonal  form has (p, q, r)  times (1, -1, 0) ' s  respectively  in  that  order.  To this

correspond a Clifford algebra p,q,r. If r = 0,  r can be omitted.

The complex case ℂp,r is defined likewise, but without q and -1.

Example. (Generators). Let a real universal Clifford algebra is given by generators: e1
2 = e2

2 = -1, e1 e2 = -e2 e1. It just gives a little

extra  work  to  find  a  suitable  bilinearform B.  Here  in  basis  (e1 e2)  we  get  B  as  a  diagonal  matrix  (-1, -1).  It  turns  out  that

ℓB, 2 = 0,2, and this is a version of the quaternions, ℍ, with e∅ = 1, e1 → i, e2 → j, e12 → k.

Example. (Non-universality). In the real universal Clifford algebra 0,3,  q = (1 + e123) /2 belong to the center, and thus commutes

with any other element. Let ℐ = 0,3 q = q 0,3. ℐ is an ideal, as q2 = q and 0,3 ℐ = 0,3 0,3 q = ℐ and ℐ 0,3 = q 0,3 0,3 = ℐ.  ℐ is

proper, as q (1 - e123) /2) = 0 and q ∈ ℐ.

It  turns  out  (theorem  6.6)  that  0,3 ℐ  is  a  non-universal  Clifford  algebra.  It  is  also  a  version  of  the  quaternions  with

e∅ = 1, e1 → i, e2 → j, e3 → k. 

The examples show that universality can not be determined from an algebra alone, it also requires knowledge of the underlying vector

space or module.

Chapter 3  The Grassmann algebra over V

The Grassmann algebra over V . Blades

In the case B = 0, we have an exterior or a Grassmann algebra Λ(V ) = ℓ(0, V ) where the product is

denoted ⋀ and named the outer product. Outer products of elements in V is called blades, when they

are non-zero. 

Theorem 3.1. In Λ(V ) define the submodule of elements of grade r ∈ ℤ by

 Λr(V ) = span {⋀i=1
r ai ai ∈ V } for r ≥ 0 and otherwise Λr(V ) = {0}. 

This makes Λ(V ) a graded algebra, as obviously Λr(V )⋀ Λs(V ) ⊆ Λr+s(V ).

Also define x → 〈x〉r, as the projection on Λr(V ) along ⊕i≠r Λi(V ), and 〈x〉 = 〈x〉0.

Set Λ<p(V ) = ⊕i<p Λi(V ), and also x → 〈x〉R = ⊕r∈R 〈x〉r , where R is a subset of ℤ.

Then

1.  Λ(V ) = ⊕r Λr(V ) and Λr(V )⋀ Λs(V ) = Λr+s(V ).

     If M is finite, then rank(ΛM(V )) = 1 and Λr(V ) = 0 for r > M 

2.  x ⋀ x = 0 and x1 ⋀ x2 = -x2 ⋀ x1

ALLAN CORTZEN
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3.  x1 ⋀ x2 ⋀… ⋀ xp  is multilinear and alternating in the x-variables

NB: 0 is associated with any grade.

Proof:  1.  In  Λ(V )  define  Ωr = span {eK K = r, K ∈ ℱ }  for  r ≥ 0  and  otherwise  Ωr = {0}.  Then

clearly  Ωr ⊆ Λr

Λ(V ) = ⊕r Ωr  and Ωr ⋀ Ωs = Ωr+s,  which implies  ⋀i=1
r Ω1 = Ωr  and therefore  ⋀i=1

r ai ∈ Ωr.  Thus

Ωr = Λr.

If M is finite, then ΩM = { eM} and r > M ⇒ Ωr = {0}

2. In  x ⋀ x = B(x, x) = 0 set  x = x1 + x2. 

3. The expression is multilinear by definition. Alternating means it is 0, if two arguments are identi-

cal. If xi = xj, then by swapping neighbors xk = xk+1  can be obtained, and by (2) the product is 0.

Example: Let  = ℤ, M = {1} and x1 = 2 e1. Then x1 is linear independent, but can not be extended to a basis.

Theorem 3.2. (Extension by outermorphism). A -linear mapping f : V1 → V2  has a unique exten-

sion, f⋀ : Λ(V1) → Λ(V2) to an algebra morphism, which is grade preserving. Moreover f⋀ is bijec-

tive, if f is.

Proof: As f (x)⋀ f (x) = 0 , the assertion follows from universal extension, which is grade preserv-

ing, as a Grassmann algebra morphism.

Universality, basis and rank

In the next theorem the work is done with Grassmann algebras to ensure the arbitrary base is orthogonal so the construction is

possible. 

Theorem 3.3 (The Invariant basis property). Two bases for V have the same finite size or are both

infinite. 

Proof: Construct Grassmann algebras Λ(V ) and Λ′(V ) from the bases (ei i ∈ M) and (ai i ∈ M′).

From theorem 2.5 (eK K ∈ ℱ ) and (a⋀K K ⊆ M′, K finite) are bases for Λ(V ) and Λ′(V ).

From  theorem  3.2  by  extension  of  idV : V → V  follows  f⋀  gives  a  linear  isomorphism

Λr(V ) → Λr
′(V ).

If M is finite, then M = max {r Λr(V ) ≠ {0}} = max {r Λr
′(V ) ≠ {0}} = M′, and likewise if M′ is

finite. 

Theorem 3.4. Assume  M is finite. Then with respect to any basis
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1.   M = rank(V )  and   M = max {r Λr(V ) ≠ 0} 

2.  ΛM(V ) =  eM 

3.  rank(Λr(V )) = 
M

r


4.  rank(Λ(V )) = 2M and rank(Λ(V )+) = rank(Λ(V )-) = 2M-1

Proof: Follows from theorem 3.1 (1,2) .

3. As {eK K = r} is a basis for Λr(V ), it has size equal to the number of subsets of M with r ele-

ments.

4. Apply the binomial formula to  (1+ 1)M and (1- 1)M. Then the first gives (4a), the sum (4b) and

the difference (4c). 

Theorem 3.5. From ℓ(B, V ) any non isomorphic Clifford algebra A in (V , B) can be found as a

quotient ℓ(B, V ) /ℐ with ideal ℐ ≠ {0}.

If M is finite, then              A in (V , B) is non-universal ⇔ rank(A) = 2k and k < M.

Proof:  Define by universality a morphism F : ℓ(B, V ) → A. Here F is surjective since A is gener-

ated by V. 

Thus  A ≃ ℓ(B, V ) /ℐ  where   ℐ ≠ {0},  as  otherwise  F  is  an  isomorphism.  In  the  finite  case

rank(A) < 2M and a divisor in this number.

The Geometric algebra (B, V )

By making the constructions in ℓ(B, V ), it is possible to work with several different Clifford algebras all in the same space.

A universal Clifford algebras ℓ(B, V ) can in this way always be supplemented with a Grassmann algebra Λ(V ).

Definition 3.6. The geometric algebra (B, V ) or (V ) is the double algebra of ℓ(B, V ) and Λ(V )

in the same space.

For xi ∈ V set xI = Πi∈I, xi  and x⋀I = ⋀i∈I, xi. By construction  e⋀I = eI. 

We may silently consider p,q,r and ℂp,q,r extended to geometric algebras. If r is omitted, then r = 0.

Chapter 4  Morphisms

Anti-morphisms

Definition 4.1.  To every algebra A is in the same linear space associated an opposite algebra Aο
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with multiplication  X ο Y = Y X . 

The  linear  identity  A → Aοis  an  anti-automorphism,  and  is  also  denoted  ο : A → Aο.  Moreover

Aοο = A and ο2 = idA.

That this multiplication makes Aο an algebra is easily verified, and also that Aοο = A and ο2 = idA. 

Theorem  4.2.   For  any  algebra  A  over    and  any  linear  mapping  f : V → A  such  that

f (x)2 = B(x, x) 1A, there exists a unique algebra anti-morphism Fο : ℓ(B, V ) → A, which extends f.

This extension is also called the universal anti-extension.

Proof: Let F be the universal extension of f. Clearly Fο = F∘ο is a solution, and Fο  is unique, as

Fο ∘ο is the universal extension of f. 

This idea also proves the corollary.

Now the following is obvious.

Corollary 4.3. Assume algebras Ui belongs to (Vi, Bi) and fi : Vi → Vi+1 is  -linear.

Then fi  has a unique extension, Ui → Ui+1  to an algebra anti-morphism, which is an anti-isomor-

phism, if fi is bijective. 

Let Fi : Ui → Ui+1be a morphism or an  anti-morphism and F = Fk ∘…∘ F1. If the number of anti-

morphism in the composition is odd, then F is anti-morphism, and otherwise a morphism.

The three main commuting involutions. 

Definition 4.4. Let U be a Clifford algebra in  (V , B), not necessarily universal.

As proved a linear mapping f : V → V  has at  most  one extension to  an automorphism or anti-

automorphism of U.

If  they exists,

      the main or grade automorphism X → X

 is the extension of f : V → V, f (x) = -x to an automor-

phism of U.

      the reversion X → X

 is the extension of f : V → V, f (x) = x to an anti-automorphism of U. 

      the Clifford conjugation X → X  is the extension of f : V → V, f (x) = -x to an anti-automor-

phism of U.

Theorem 4.5. ℓV(B) is extended to a geometric algebra to make the grade concept available.

1. In ℓV(B) the main automorphism, the reversion, and the Clifford conjugation exists.

2. For the main automorphism holds   grade (X ) = r ⇒ X

= (-1)r X

3.  For  the  reversion   holds    (X Y)~ = Y


X

,  (a1 a2 … ar)

~ = ar … a2 a1  for  ai ∈ V  and

grade (X ) = r ⇒ X

= (-1)r(r-1)/2 X
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4. For the Clifford conjugation holds  X = X
 ~

 and  grade (X ) = r ⇒ X = (-1)r(r+1)/2 X

5. These three mappings are grade preserving, involutions, commuting and independent of the B.

Each one is the composition of the two others.

Proof: 1. Universality secures the existence. 

2.  As  f 2  is  the  identity,  the  extension  is  bijective.  In  the  standard  basis  for  W  we  get

eK

= Π K (-ek) = (-1)K eK.

3. In the standard basis for W by swapping (K- 1) +…+ 2+ 1 neighbors staring from one end we

get eK

= Π k∈K, ek = (-1)K (K-1)/2 eK.

4. Follows from corollary 4.3.

5. Obvious from the graded expressions.
NB: Complex conjugation denoted X conj to distinguish it from Clifford conjugation.

Chapter 5  Basic structure of Geometric algebra 

Geometric algebra basic formula collection

Definition 5.1. Set χS = 1, if the proposition  S is true, and else zero. Define in (B, V ) composi-

tions · ,⌋ and ⌊ by bilinearity by

eH · eJ = χH=J eH eJ, the scalar product,

eH ⌋ eJ = χH⊆J eH eJ,  the left contraction,

eH ⌊eJ = χH⊇J eH eJ,  the right contraction.

We already know from the product definition based on the α and β functions that

eH ⋀ eJ = χH⋂J=∅ eH eJ

NB: In case of  = ℂ the scalar product is ℂ-bilinear, not hermitian.

  

Theorem 5.2. In a geometric algebra (B, V ) holds 

1.   x X = x⌋ X + x ⋀ X   and    X x = X ⋀ x+X ⌊x 

      x · y = B(x, y) 1,

2.   If grade(X ) = r and  grade(Y) = s, then

      X ·Y = 〈X Y〉 = 〈Y X〉 = Y ·X  ,    X⌋ Y = 〈X Y〉s-r ,   X ⌊Y = 〈X Y〉r-s   and   X ⋀ Y = 〈X Y〉r+s

      The three main involutions are symmetric, X

·Y = X ·Y


,    X


·Y = X ·Y


,     X ·Y = X ·Y

3.   If grade(X ) = r and  grade(Y) = s, then

      r ≠ s ⇒ X ·Y = 0,     Y X = X

⌋ Y



~
= (-1)(s+1) r X Y   and X Y = Σi=r-s step 2

r+s 〈X Y〉i

4.   (X ⋀ Y )⌋ Z = X⌋ (Y ⌋ Z)   and   (X ⋀ Y ) ·Z = X · (Y ⌋ Z) 

5.   x ⌋ (X Y) = (x ⌋ X ) Y +X

(x ⌋ Y      
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      x ⋀ (X Y) = (x ⌋ X ) Y +X

(x ⋀ Y)    

      x ⋀ (X Y) = (x ⋀ X ) Y -X

(x  Y    

      x ⌋ (X Y) = (x ⋀ X ) Y -X

(x ⋀ Y)  

6.   x ⌋ (X ⋀ Y) = (x ⌋ X )⋀ Y +X

⋀ (x ⌋ Y

      x ⋀ (X⌋ Y) = (x ⌋ X )⌋ Y +X

 (x ⋀ Y)  

7.   x⌋ (x1 x2 … xp) = ∑k=1
p (-1)k-1 x1 x2 …(x⌋ xk… xp

8.   x⌋ (x1 ⋀ x2 ⋀… ⋀ xp) = ∑k=1
p (-1)k-1 x1 ⋀ x2 …⋀ (x⌋ xk… ⋀ xp 

9.   x1, x2, … , xp are pairwise  orthogonal ⇒ Πi=1
p xi = ⋀i=1

p xi

10.  x X -X


x = 2 x X and x X +X


x = 2 x ⋀ X

11.  ∀x∈V (x ⋀ A = 0) ⇔ (A ∈  eM, if M is finite, and otherwise A = 0).  

      Assume  is a field or the weaker condition μ ei
2 = 0 ⇒ μ = 0 or ei

2 = 0 for i ∈ M, μ ∈  .

Then

      ∀x∈V ( x⌋ A = 0) ⇔ A ∈ (V0),  where V0 is the radical or kernel of B.  (NB: Always  ⊆(V0))

12. (x1 ⋀ x2  ⋀ xr) · (yr ⋀  ⋀ y2 ⋀ y1) = Σσ sσ (x1 · yσ(1)) …(xr · yσ(r)) 

      where summation is over all permutations σ of {1, …, r}.

13. Factor expansion of x⋀K:    Let X = x⋀K and B ∈ Λs(V ).  If  τH = α(H, K\H) (B · x⋀H) ∈  *),

then 

                          B⌋ X = ΣH⊆K, H=s τH x⋀K\H

*) α is from definition 2.1:  α(H, J) = Π (-1) for (h, j) ∈ H ⨯J and h > j  

Proof: 

By linearity it is sufficient to sketch proofs of the statements for basis elements.

As we may assume x = ei, X = eH ∈ Λr, Y = eJ ∈ Λs, Z = eK ∈ Λt, we get

1. (1a)  h ∈ H ⇒ eh ⋀ eH + eh ⌋ eH = eh eH and similar for h ∉ H. (1b) Likewise.

    (1c)  ei ⌋ ej = B(ei, ej) 1 is obvious in the two cases i = j and i ≠ j

2. (2a) eH · eJ = χH=J eH eJ = eJ · eH and H ≠ J ⇒ eH eJ is not a scalar.

    (2b) eH⌋ eJ = χH⊆J eH eJ = χH⊆J eH △ J = χH⊆J eJ \H which has grade s- r.

    (2c) Like (2b)

    (2d) eH ⋀ eJ = χH⋂J=∅ eH eJ which has grade s+ r.

    (2e)  If r ≠ s it is obvious. Otherwise clear from graded expressions.

3. (3a) Follows from the definition of the scalar product

    (3b) Set τK = (-1)K (K-1)/2, as temporary set function.

           (eH ⌊eJ)
~ = χJ⊆H (eH eJ)

~ = χJ⊆H eJ


eH

= τJ τH χJ⊆H eJ eH = τJ τH eJ ⌋ eH = eJ


⌋ eH



           and with some work τJ τH τH\J = (-1)(s+1) r .

    (3c)  From  a  Venn-diagram  obviously  H △ J  = J - H + 2 H\J .  Thus

H △ J  = H - J + 2 J \H .     
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           Hence the grade of eH eJ  is an even number or zero higher than J - H . The upper limit

comes from eH ⋀ eJ.

4.  (4a)  We  have  χH⋂J=∅ χH⋃J⊆K = χH⊆(K\J) χJ⊆K,  as  both  represents  the  situation:  K  including

disjunct H and J. 

           Multiplying the equation with eH eJ eK gives    (eH ⋀ eJ )⌋ eK = eH⌋ (eJ ⌋ eK) .

    (4b) Likewise χH⋂J=∅ χH⋃J=K = χH=(K\J) χJ⊆K, as both represents the situation: K equal to union

of disjunct H and J. 

           Multiplying the equation with eH eJ eK gives    (eH ⋀ eJ ) · eK = eH · (eJ ⌋ eK) .

5. (5a) The equation      ei ⌋ (eH eJ) = (ei ⌋ eH) eJ + eH

(ei  eJ can be reduce to

        1. If i ∈ H ⋂ J :    0 = ei eH eJ + eH


ei eJ,  as eH eJ = σ(H, J) eH △ J and eH


ei = -ei eH

        2. If i ∈ H\J :       ei eH eJ = ei eH eJ + 0

        3. If i ∈ J \H :       ei eH eJ = 0+ eH


ei eJ, as eH


ei = ei eH

        4. If i ∉ H ⋃ J :    0 = 0+ 0

    (5b) The equation     ei ⋀ (eH eJ) = (ei ⌋ eH) eJ + eH

(ei ⋀ eJ) can be reduce to

        1. If i ∈ H ⋂ J :   ei eH eJ = ei eH eJ + 0

        2. If i ∈ H\J :       0 = ei eH eJ + eH


ei eJ and eH


ei = -ei eH

        3. If i ∈ J \H :       0 = 0+ 0 

        4. If i ∉ H ⋃ J :   ei eH eJ = 0+ eH


ei eJ and eH


ei = ei eH

    (5c) From  x (X Y) = (x X ) Y subtract (5a) and use (1)

    (5d) From  x (X Y) = (x X ) Y subtract (5b) and use (1)

6.  If grade(X ) = r and  grade(Y) = s, then for (6a) take grade r+ s- 1 in (5a) or (5d),

      and for (6b)  take grade s- r+ 1 in (5b) or (5c)

7,8.  Follows  from  (5a,  6a)  with  induction  step,  as  e.g.

x⌋ (x1(x2 … xp)) = (x ⌋ x1) (x2 … xp) - x1(x ⌋ (x2 … xp)) 

9.  Follows  from  (1a,  7)  with  induction  step,  as  e.g.  
x1 x2 … xp = x1 ⋀ (x2 … xp) + x1⌋ (x2 … xp) = x1 ⋀ (x2 … xp)

10. From (1) and (3) follows X


x = X

⋀ x+X


⌊x = x ⋀ X - x⌋ X . This and (1a) gives the assertion.

11. The radical V0 = spanei ei
2 = 0 , i ∈ M. Let A = Σ μK eK in the standard basis. Then

  (11a) If x ⋀ A = 0, then eh ⋀ A = Σ μK eK⋃{h} = 0 summing over {K h ∉ K}. 

          As eK⋃{h} in the sum are different, we have h ∉ K ⇒ μK = 0 

  (11b) If x⌋ A = 0, then eh⌋ A = Σ ± μK eh
2 eK\{h} = 0 summing over {K h ∈ K}. 

          As  eK\{h}  in  the  sum  are  different,  if  (h ∈ K and μK ≠ 0),  then

eh
2 μK = 0 ⇔ eh

2 = 0 ⇔ eh ∈ (V0).   

12.  (x1 ⋀ x2  ⋀ xr) · (yr ⋀  ⋀ y2 ⋀ y1) = Σσ sσ (x1 · yσ(1)) …(xr · yσ(r))  for  some sign factors  sσ,  since

by (8) each x is paired with each y once. This is done systematically permuting the y-set with σ, and

then contracting successively each x for descending x-indices with the nearest remaining y. If the

permutation σ requires k neighbor swaps, the sign change is sσ = (-1)k, which is the sign of the
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permutation,  sign(σ).

13. If  s > k, the formula clearly becomes 0 = 0.  

Otherwise assuming B = b1 ⋀ b2 ⋀… ⋀ bs we get from (4) that B⌋ X = b1⌋ (b2⌋… ⌋ (bs⌋ X )…). 

Equation (7) applied s times gives k(k- 1)…(k- s+ 1) terms of form Πk=1
s ± (bk⌋ xhk

) x⋀K\H, where

H = ⋃k=1
s {hk}.

Hence B⌋ X = ΣH⊆K, H=s τH x⋀K\H with some scalar factor τH. 

Focusing here on the terms with x⋀K\H  in B⌋ X = α(H, K\H) (B⌋ (x⋀H ⋀ x⋀K\H) ), as x⋀K\H  does not

influence the ±1 factors in(7), now follows τH = α(H, K\H) (B⌋ x⋀H) = α(H, K\H) (B · x⋀H).

Determinant Theorem 5.3.  Let f : V → Vbe  linear mapping.

1. If V has a finite basis, then the determinant det( f ) is defined by F(eM) = det( f ) eM independent of

basis. 

2. Moreover ( f ∘g)⋀ = f⋀∘g⋀, det( f ∘g) = det(g) det( f ), and det f -1 det( f ) = 1 when f is bijective.  

3. Assume m = M,  M = {1, …, m}  and  f (as) = Σi θs
i ai in some basis (ai i ∈ M). Then

 det( f ) = Σσ sign(σ) ( θ
σ(1)
1 … θσ(m)

m ), where summation is over all permutations σ of M.

Proof:  1.  Let  (ai i ∈ M)  be  another  basis.  As   ΛM(V ) =  eM,  we  get  aM = λ eM  and

f⋀(aM) = det( f ) aM from the definition.

2. Equality of f⋀∘g⋀ and ( f ∘g)⋀  follow from uniqueness of universal extension.

From det( f ∘g) eM = ( f ∘g)⋀ (eM) = f⋀(g⋀(eM)) = f⋀(det(g) eM) = det(g) det( f ) eM  (b, c) follows.

3. Introduce a Clifford algebra by letting (ai i ∈ M) be orthonormal. 

Then θs
i = ai · f (as) and det( f ) = eM ·F (eM)

~, and the assertion follows from (12).

Automorphism Theorem 5.4. Let f : V → Vbe  linear mapping, such that f (x)2 = B(x, x) 1A. Then f

has two universal extensions:

To an outermorphism f⋀ : Λ(V ) → Λ(V ), and to Clifford algebra isomorphism  F : ℓV(B) → ℓV(B).

Assume B( f (x), f (y)) = B(x, y), or  is a field not of characteristic 2.  Then f⋀ is called the univer-

sal extension of f  to (B, V ), as

F = f⋀, and thus is an outermorphism, and furthermore grade preserving, an orthogonal isomor-

phism, an isomorphism for ⌋ and ⌊, and commutes with the three main involutions.

 

Proof: For i ≠ j and x = ei + ej, we get f (x)2 = B(x, x) 1A ⇒ f (ei) f (ej) + f (ej) f (ei) = 0 by expan-

sion. From theorem 5.2 (1) now follows

0 =

f (ei) f (ej) + f (ej) f (ei) = f (ei)⋀ f (ej) + f (ei) · f (ej) + f (ej)⋀ f (ei) + f (ej) · f (ei) = 2 f (ei) · f (ej)

.

Hence   ( f (ek) k ∈ K)  are  pairwise   orthogonal,  and  by  theorem  5.2  (9)

f⋀(eK) = ⋀k∈K f (ek) = Πk∈K f (ek) = F(eK), and by linearity F = f⋀.
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Thus F is grade preserving, also expressed as F(〈Z〉k) = 〈F(Z)〉k. Let grade(X ) = r and grade(Y) = s.

Then from theorem 5.2 (2d) follows

     F(X ⋀ Y) = F(〈X Y〉r+s)) = 〈F(X Y)〉r+s = 〈F(X ) F(Y)〉r+s = F(X )⋀ F(Y)

Likewise can the other compositions be treated with use of theorem 5.2.2, e.g. 

     F(X ·Y) = F(〈X Y〉)) = 〈F(X Y)〉 = 〈F(X ) F(Y)〉 = F(X ) ·F(Y),

     F(X⌋ Y) = F(〈X Y〉s-r)) = 〈F(X Y)〉s-r = 〈F(X ) F(Y)〉s-r = F(X )⌋ F(Y)

The involution statement follow from the explicit graded expressions.

Anti-automorphism Theorem 5.5. Define G~(X ) = G(X~).  Let f : V → Vbe  linear mapping,  such

that f (x)2 = B(x, x) 1A. Then f has two unique universal anti-extensions: To an anti-outermorphism

f⋀
~ : Λ(V ) → Λ(V ), and to Clifford algebra anti-isomorphism  F~ : ℓV(B) → ℓV(B).

Assume B( f (x), f (y)) = B(x, y), or  is a field not of characteristic 2. Then f⋀
~ is called the univer-

sal anti-extension of f  to (B, V ), as

1. F~ = f⋀
~, and thus is an anti-outermorphism, grade preserving, an orthogonal isomorphism and

commutes  with  the  three  main  involutions.  Furthermore  F~(X⌋ Y) = F~(Y) ⌊F~(X )  and

F~(Y ⌊X ) = F~(X )⌋ F~(Y).

2. If V has a finite basis, then F~(eM) = (-1)M (M-1)/2 det( f ) eM.

Proof: 1. Using the Automorphism Theorem and reversion all becomes obvious. E.g. if grade(X ) = r

and grade(Y) = s, then 

F~(X⌋ Y) = F~(〈X Y〉s-r) = FY


X


s-r

 = F(Y

) F(X


)

s-r
= F(Y


) F(X


) = F~(Y) ⌊F~(X ),  and likewise

for ⌊ and the inner product.

2.  F~(eM) = det( f ) eM

= (-1)M (M-1)/2 det( f ) eM

Examples. The three main involutions.

Theorem 5.6. Assume B is regular and   is a field of characteristic≠2. Then

     A is universal in (V , B)  ⇔  A has a main automorphism 

Proof:  The  way  ⇒  has  been  proved,  so  assume  A  is  non-universal  and  a  main  automorphism

ψ : A → A exists. Thus ψ(x) = -x.

From  universality  of  ℓV(B),  we  get  a  unique  algebra  morphism  F : ℓV(B) → A,  such  that

x2 = F(x)2, x ∈ V , and with kernel ideal ℐ ≠ {0}. 

Also from B is regular follows ℐ ⋂ V = ∅. 

As x → ψF(x

) = ψ(-F(x)) = F(x), the universal extension of this gives ψF(X


) = F(X ). 

Hence ψF(ℐ

) = F(ℐ) = {0} ⇒ F(ℐ


) = {0}, and therefore ℐ


⊆ ℐ

Choose  X ∈ ℐ\{0}  with  lowest  highest  grade  term.  Then  X0 = X +X

  2 ∈ ℐ  and
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X1 = X -X

  2 ∈ ℐ. 

We have x Xr ∈ ℐ and Xr x ∈ ℐ, and theorem 5.2 (10a) gives 2 x⌋ Xr ∈ ℐ for r = 0 , 1.

From 2 x⌋ X  has lower highest grade term than X follows the contradiction X = 0, and we are done. 

Linear independency in Grassmann algebras

Definition 5.7. A list of elements in a module is linear independent, if the only (finite) linear combina-

tion of the elements giving zero is that with zero factors. Linear dependent means not linear indepen-

dent.

Obviously holds: A list of elements is linear independent ⇔ every finite sublist is linear indepen-

dent 

Examples. 1) 0 is linear dependent.  2) x ∈ V \{0} is linear independent, iff λ x = 0 ⇒ λ = 0.  3) A basis is linear independent.

Theorem 5.8. Let H be finite. Then

  A: (xh h ∈ H) is linear independent  ⇔   B: x⋀H is linear independent  ⇔   C: (x⋀K K ⊆ H) is

linear independent 

Proof: 1. Assume (A). Define a geometric algebra structure on Λ(V ) by letting (ei) be an orthonor-

mal basis and q(i) = 1. 

Also define a induction proposition  θ( j) : (x⋀J J ⊆ H, J  < j) is linear independent. 

θ( j)  is  proved by induction after  j.   θ(0)  is  obvious and θ(1)  holds for  j = 1 by assumption,  so

assume θ( j) holds and j ≥ 1.

Let λ ≠ 0, J  = j and J ⊆ H. Then 0 ≠ λ x⋀J = ΣK⊆I λK eK and pick one λK ≠ 0. 

If h ∈ H\J , then by factor expansion  from theorem 5.2.13

eK

⌋ (λ x⋀J ⋀ xh) = λK xh + Σk∈J μk xk ≠ 0 and thus λ x⋀J ⋀ xh ≠ 0. This proves θ( j+ 1). 

Now θ(H ) follows from the induction principle. This imply (B). 

2. Assume not(C), i.e. X = Σi=1
m λi x⋀Ki = 0, where each λi ≠ 0, Ki ⊆ H and  i ≠ j ⇒ Ki ≠ Kj.

Select  k  with  x⋀Kk
 of  lowest  grade.  This  imply  Ki ⊆ Kk ⇒ Ki = Kk  and  X ⋀ x⋀H\Kk

= λk x⋀H = 0,

which shows not(B).

3. (A) is a special case of (C)
NB: In (C) it is not only one element, but a list of 2H elements.

Following corollaries are easy consequences of the theorem:

Corollary 5.9.  S = (x1, x2 … , xp) is linear independent   ⇔   S⋀ = x1 ⋀ x2 ⋀… ⋀ xp is linear inde-

pendent 
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Corollary 5.10.  Allow H0 ⊆ M to be infinite. Then

  (xh h ∈ H0) is linear independent  ⇔   (x⋀K K ⊆ H0, K finite) is linear independent 

Inclusion

Many statements from this section on have analogous versions created with obvious use of

reversion.

Definition 5.10. If U  is a submodule of V, then set Λ(U) = span {⋀i=0
m U m ∈ ℕ}, which obviously is

the Grassmann-algebra generated by U. 

Also set Λ>0(U) = span {⋀i=1
m U m ∈ ℕ}. 

  

Theorem 5.11. Let A = a⋀H be a blade.

Define  modules  VA = {x ∈ V x ⋀ A = 0 },  VA⊥ = {x ∈ V ∀h∈H x · ah = 0 }  and  set  A∥ = Λ(VA),

A⊥ = Λ>0(VA⊥).

Obviously span {ah h ∈ H} ⊆ VA implying  Λ({span {ah h ∈ H}) ⊆ A∥. Moreover also V1 = {0} and

V1⊥ = V and 1∥ = {0}, 1⊥ = Λ>0(V ).

Omitting ∥ like in X ⊆ A instead of X ⊆ A∥ can be used, if it is clear that A means an algebra and

not a blade.

Inclusions like X ⊆ A∥ or X ⊆ A⊥ may be used for elements, as in  e1 ⊆ A∥ meaning {e1} ⊆ A∥ 

Then

1.  X ∈ span {a⋀H1, … , a⋀Hk
∀h∈H Hh ⊆ H} ⇒ X ⊆ A∥

       NB: The opposite inclusion is true, if V is a vectorspace; but not generally for modules.

2.  B ⌋ A ⊆ A∥

3.  C⌋ A = C A, when C ⊆ A∥

4.  A2 = A A = A ·A    and   A is invertible ⇔ A ·A invertible ⇒  A-1 = A / (A ·A)

5.  Assume A is invertible. Then span {ah h ∈ H} = VA.

NB: In Corollary 6.2.5 is proved:  A invertible ⇒ V = VA ⊕VA⊥ 

Proof:

1. Obvious.

2. Obvious from factor expansion and linearity. 

3. By linearity we may assume C = cK with all parts cr ⊆ A∥, and proceed by induction after p = K.

It is obvious for p = 0, and true for p = 1, as by cr⌋ A = cr A- cr ⋀ A = cr A from  theorem 5.1.1.

Now the induction step. 
(cs ⋀ c⋀K)⌋ A = cs⌋ (c⋀K⌋ A) = cs⌋ (c⋀K A) = (cs⌋ c⋀K) A+ c⋀K


(cs A = (cs c⋀K A+ c⋀K


cs A =

    (cs⌋ c⋀K) A+ c⋀K


⋀ cs A+ c⋀K


⌊cs A = (cs ⋀ c⋀K) A, as c⋀K


⌊cs = (-1)p+1 (cs c⋀K


 = -(cs c⋀K  
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The induction principle finishes this part.

4. Follows from (3) that A⌋ A = A A and the remaining is obvious. 

5. Assume x ∈ VA. Then  x ⊆ A∥,  x A = x⌋ A and from factor expansion, theorem 5.2.13, follows

x⌋ A  is  a  linear  combination  of  (h- 1)-blades  of  form  a⋀Hi.  Therefore

x = Σ λi a⋀Hi A = Σ λi(a⋀Hi ⌋ A) ,  and  again  from  factor  expansion  x = Σ μ j a j.  Thus

VA ⊆ span {ah h ∈ H} ⊆ VA.

Examples: 1. Assume a blade C = c⋀K. Then C ∈ A⊥ ⇔ ∀ h ∈ H , k ∈ K (ck ·ah = 0) ⇔ A ∈ C⊥.

2. Clearly C ∈ A⊥ ⇒ C⌋ A = 0, but the opposite is not true, as ∃ h ∈ H ∀ k ∈ K (ck ·ah = 0) ⇒ C⌋ A = 0 which only needs one element

ah.

3. Let  = ℤ9, M = {1, 2, 3}, e1
2 = 1, e2

2 = 1, e3
2 = 1, such that B is regular. Set A = e1 ⋀3 e2. Then VA = span {e1, e2}, though e2 is not

generated by {e1, 3 e2}.

Furthermore VA⊥ = span {3 e2, e3}.. 

 

Lemma 5.12. Let A be a blade. Then

1.  If C ⊆ A∥:   

    (C⌋ B) A = C ⋀ (B A)     

    (C⌋ B)⌋ A = C ⋀ (B⌋ A)   

    (C ⋀ B) A = C (B A)

    (C B)⌋ A = C (B⌋ A)  

2 . If C ⊆ +A⊥:

    (C⌋ B) A = C⌋ (B A)   

    (C⌋ B)⋀ A = C⌋ (B ⋀ A) 

    (C ⋀ B) A = C ⋀ (B A)

    (C B )⋀ A = C (B ⋀ A)

Proof: By linearity, it is sufficient to consider blades. Assume the grades of A, B, C are respectively

r, s, t. 

The proofs are induction after the grade of  C = c1 ⋀…⋀ ct. Clearly all equations are true for scalar

C. 

Plenty use is made of theorem 5.2 (1a) and 5.2 (4a). 

1. Assume c ⋀ A = 0 for each c = ci. 

    (C⌋ B) A = C ⋀ (B A)     

  1a. Case r = 1. From theorem 5.2 (5b):  c ⋀ (B A) = (c ⌋ B) A+B

(c ⋀ A) = (c  B A, i.e. case t = 1.

This with B → C⌋ B and the induction

  assumption gives ((c ⋀ C)⌋ B)) A = (c ⌋ (C⌋ B)) A = c ⋀ ((C⌋ B) A) = c ⋀ (C ⋀ (B A)) and use of the

induction principle gives the assertion.

  1b.  Follows from extracting grade r- s+ t in (1a)
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  1c. From theorem 5.2.5 (d):  c⌋ (B A) = (c ⋀ B) A-B

(c ⋀ A) = (c ⋀ B) A, i.e. case t = 1. This with

B → C ⋀ B and the induction 

  assumption gives  (c ⋀ (C ⋀ B)) A = c⌋ ((C ⋀ B) A) = c⌋ (C (B A)) = (c ⋀ C) (B A)), and the induction

principle finishes this part.

  1d. To (2b)  (c ⌋ B)⌋ A = c ⋀ (B⌋ A) add  (c ⋀ B) ⌋ A = c ⌋ (B⌋ A)  to get  (c B) ⌋ A = c (B⌋ A), i.e.

case t = 1. This with B → C B and the induction

    assumption gives (c C B) ⌋ A = c ((C B)⌋ A) = c (C (B⌋ A)) and also ((c⌋ C) B)⌋ A = (c⌋ C) (B⌋ A)

    By subtraction we get ((c ⋀ C) B)⌋ A = (c ⋀ C) (B⌋ A), and the induction principle leads to the

assertion.

2. Assume C ⊆ A⊥. Assume c⌋ A = 0 for each c = ci. 

  2a.  Follows from theorem 5.2 (5b)  c ⌋ (B A) = (c⌋ B) A+B

(c A = (c B A, i.e. case t = 1. This

with B → C⌋ B and the induction 

    assumption  gives

((c ⋀ C)⌋ B) A = (c⌋ (C⌋ B)) A = (c⌋ (C⌋ B)) A = c ⌋ ((C⌋ B) A) = c ⌋ (C⌋ (B A)) = (c ⋀ C)⌋ (B A)  ,  and

the induction principle gives

    the assertion.

  2b.  Follows from extracting grade r+ s- t in (2a)

  2c.  From  (c B) A = c (B A) subtract (2a):  (c⌋ B) A = c ⌋ (B A) to get  (c ⋀ B) A = c ⋀ (B A), i.e. case

t = 1. This with B → C ⋀ B and the

    induction assumption gives  (c ⋀ C ⋀ B) A = c ⋀ ((C ⋀ B) A) = c ⋀ (C ⋀ (B A)), and the induction

principle gives the assertion.

  2d.   To   (c ⋀ B) ⋀ A = c ⋀ (B ⋀ A)  add  (2b)   (c ⌋ B) ⋀ A = c ⌋ (B ⋀ A)  and  to  get

(c B) ⋀ A = c (B ⋀ A).

    This  with  B → C B  and   the  induction  assumption  gives

(c (C B) )⋀ A) = c ((C B )⋀ A) = c C (B ⋀ A) and also ((c⌋ C ) B )⋀ A) = (c⌋ C) (B ⋀ A) 

    Subtracting these two equation gives (c ⋀ C) (B ⋀ A) = ((c ⋀ C) B)⋀ A, and the induction princi-

ple closes the proof.

Chapter 6  Geometric transformations

Projections

Here are four types of projections treated:

Projection PA on a blade.

Rejection QA by a blade.

Projection PA along a blade.

Projection PA
B on A along B.
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Short writing like P(X ), Q(X ) is wide used, when it is clear which mapping it stands for.

The standard formula for projection on u is x = (x ·u) u / (u ·u), and this is generalized here.

NB: Building up from this formula with outermorphism is natural, but proofs seems easier starting from a general formula.

Theorem 6.1. For a h-blade A assume ρ = A ·A is invertible, thus A-1 = ρ-1 A.

Define the projection on A as PA(X ) = P(X ) = (X⌋ A)⌋ A-1. 

1. Then P is grade preserving,

2. P(X ) = (X⌋ A) A-1,   P(X ) = ρ-1 A (A ⌊X ) = ρ-1 A ⌊ (A ⌊X )        

3. X ⊆ A ⇒ P(X ) = X ,  P(X ) ⊆ A ,  P2(X ) = P(X )

4. P(Λ(V )) = A∥ , P(V ) = VA  ,  P(A⊥) = {0}.

5. P is symmetric, X ·P(Y) = P(X ) ·Y  

6. Moreover P is an outermorphism.

 

Proof:  Assume grade(X ) = r and  grade(Y) = s. Then

1. grade(X⌋ A) = h- r and grade(P(X ) = h- (h- r) = r. 

2. (2a) P(X ) = (X⌋ A) A-1, as (X⌋ A) ⊆ A which imply P(X ) = ρ-1(X A A.

    (2b) Also ρ P(X ) = (X⌋ A)⌋ A = (-1)(h+1) (h-r) A ⌊(X⌋ A = (-1)(h+1) (h-r)+(h+1) r A ⌊(A ⌊X ) = A ⌊(A ⌊X )

3. From  X ⊆ A, follows P(X ) = (X⌋ A) A-1 = X A A-1 = X .

    As  (X⌋ A) ⊆ A, the P(X ) = (X⌋ A) A-1 ⊆ A and  P2(X ) = P(P(X )) = P(X ) using (3a).

4. (4a) follows from (3a,b)

    (4b) follows from P gradepreserving and (4b), as  P(V ) = 〈A∥〉1 = VA.

    (4c)   If  X ⊆ A⊥,  then  by  lemma  5.12  (2a)  P(X ) = (X⌋ A-1 A = X A-1 A = X 1 = 0,  as

 ⋂ A⊥ = ∅.

5. As  P is grade preserving and elements of different grades are orthogonal, we may assume r = s

and get

    X ·P(Y) = 〈X P(Y)〉 = X A-1(A ⌊Y) = 〈(X A-1 (A ⌊Y) = 〈(X A-1 A Y = P(X ) · Y

6. Use is made of the inclusion property theorem 5.12 (1b) several times:

    P(X )⋀ P(Y) = P(X )⋀ ((Y⌋ A)⌋ A-1 = (P(X ) (Y A A-1  and 

     P(X )⌋ (Y⌋ A) = (P(X )⋀ Y)⌋ A = (-1)r s (Y ⋀ P(X ))⌋ A = (-1)r s Y⌋ (P(X )⌋ A)

        = (-1)r s Y⌋ (P(X ) A) = (-1)r s Y⌋ (X⌋ A) = (-1)r s (Y ⋀ X )⌋ A = (X ⋀ Y)⌋ A

    Thus P(X )⋀ P(Y) = P(X ⋀ Y).

Corollary 6.2. Define the rejection of X by A as  QA(X ) = Q(X ) = X -PA(X ). Then 

1. QA(x) = A-1⌋ (A ⋀ x) = A-1(A ⋀ x) = (x ⋀ A) A-1.

2. Q∘P = P∘Q = 0,  Q2(X ) = Q(X ) and symmetry, X ·Q(Y) = Q(X ) ·Y.

3. Q is gradepreserving, and Λr(V ) = P(Λr(V ))⊕ Q(Λr(V )) 
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4. x ∈ VA⊥ ⇒ Q(x) = x,   Q(A∥) = {0},  Q(V ) = VA⊥ 

5. V = P(V )⊕ Q(V ) = VA ⊕ VA⊥ 

NB: Q(X ) is not an outermorphism, but this is a commonly used definition. Below is extension of Q(x) by outermorphism covered.

Proof: Let P = PA.

1.  Follows  from  theorem  5.2  (6b),  as  

ρ Q(x) = x ⋀ (A⌋ A) - (x⌋ A)⌋ A = A

 (x ⋀ A) = A (A ⋀ x) = A (A ⋀ x), as A ⊆ (A ⋀ x)∥.

    Theorem 5.2 (3b) gives A⌋ (A ⋀ x) = (-1)h (h+2) (A ⋀ x) ⌊A = (x ⋀ A) ⌊A = (x ⋀ A) A

2. Obvious from the definition of Q and theorem 6.1 (3c), (5), e.g.  Q∘P(X ) = P(X ) -P(P(X )) = 0.

3.  Gradepreserving  is  obvious  from  the  definition.  Λr(V ) = P(Λr(V )) +Q(Λr(V ))  ,  as

P(X ) +Q(X ) = X .

     If  X = P(Y) = Q(Z),  then  X = P(X ) +Q(X ) = P(Q(Z)) +Q(P(Y)) = 0.  Thus

P(Λr(V ))⋂ Q(Λr(V )) = {0}.

4. (4a), x ∈ VA⊥ ⇒ x = P(x) +Q(x) = Q(x), as P(A⊥) = {0}.

    (4b) X ⊆ A ⇒ Q(X ) = X -P(X ) = 0. 

    (4c) If A = a⋀H, we get  Q(x) · ai = x ·Q(ai) = 0. Thus Q(x) ∈ VA⊥, and Q(V ) ⊆ VA⊥ ⊆ Q(V ) by

(4a).

5. Now obvious.

Corollary 6.3. Define the projection along A, A,  as the extension of  QA(x) by outermorphism.

Then A is grade preserving, and

1. A(X ) = (X ) = A-1 (A ⋀ X ) = A-1(A ⋀ X ) = (X ⋀ A) A-1 = (X ⋀ A) A-1 ⊆ A⊥

2. X ⊆ A⊥ ⇒ (X ) = X ,   (X ) ⊆ A⊥,  2(X ) = (X ),   (A∥) = {0}, and  PA ∘A = A ∘PA = 0 

3. Symmetry X ·(Z) = (X ) ·Z  

Example: In 4,0  let X = (e1 + e3)⋀ (e2 + e4)  and A = e12. Then  QA(X ) = X - PA(X ) = X - e12 = e14 - e23 + e34. This is even not a

blade, as Q(X )⋀Q(X ) = -2 e1234.

However (X ) = e3 ⋀e4.

Proof: Assume X = x1 ⋀  ⋀ xr.

When Q is extended by outermorphism  wi = PA(xi) and yi = QA(xi) = (xi),  then  xi = yi +wi  and

Y = (X ) = y1 ⋀  ⋀ yr ⊆ A⊥.

1. From wi ⊆ A∥ ⇒ A ⋀ wi = 0 and  and lemma 5.12 (2b) follows 

 A-1 (A ⋀ X ) = A-1(A ⋀ (y1 +w1)⋀  ⋀ (yr +wr)) = ρ-1 A (A ⋀ Y) = ρ-1(A A ⋀ Y = Y = (X ).

Finally A⌋ (A ⋀ X ) = (-1)(h+r+1) h (-1)h r (X ⋀ A) ⌊A = (X ⋀ A) ⌊A.

2. Follows easily from corollary 6.2 and   being an outermorphism. 

3.  We  may  assume  grade(Z) = r.  Then
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X ·(Z) = X A-1(A ⋀ Z) = X ⋀ A-1 (A ⋀ Z) = X ⋀ A-1 A Z = (X ) ·Z  

Theorem 6.4 Projection PA
B on A along B (with (A ⋀ B)⊥ fixed). Assume  is a field not of characteris-

tic 2. 

For a r-blade A and a s-blade B let C = A ⋀ B and assume C is invertible and set η = (B ⋀ A) ·C.

Then C-1 = (-1)r s η-1 C and           

1. V = VA ⊕ VB ⊕ V⊥C as direct sum of vectorspaces, and this defines projections. PA
B is the projec-

tion on VA ⊕ V⊥C along VB. 

2. PA
B  extended by outermorphism gives  PA

B(X ) = η-1(A C (B ⋀ X )

3.  X ⊆ Λ(VA +V⊥C) ⇒ P(X ) = X,  X ⊆ B ⇒ P(X ) = 0,  P(X ) ⊆ Λ(VA +V⊥C),  P2(X ) = P(X ),

PA
B ∘PB

A = PB
A ∘PA

B = C, PB
A +PA

B -C = idΛ(V) 

Proof: As all holds for r = 0 or s = 0 where P1
B(X ) = B(X ) and PA

1 (X ) = X , assume r, s > 0.

1. VC ⊕ V⊥C  from corollary 6.2. Let (ai, i ∈ I), (bj, j ∈ J) be bases for VA and VB, such that A = a⋀I

and B = b⋀J. 

As  C = a⋀I ⋀ b⋀J ≠ 0, the combined list of bases is a basis for VC, and VC = VA ⊕ VB.

2. Let X = x1 ⋀ x2 ⋀  ⋀ xr, xi = ai + bi + zi and yi = ai + zi , where ai ∈ VA, bi ∈ VB and zi ∈ V⊥C. 

PA
B(x)  extended by outermorphism gives PA

B(X ) = Y = ⋀i yi. 

Expanded as a sum of blades, X -Y = Σ…⋀ bk ⋀  , where each blade contain at least one factor bk.

Hence  B ⋀ (X -Y) = 0 and B ⋀ X = B ⋀ Y. By  factor expansion 

(A⌋ C)⌋ (B ⋀ Y) = ((A⌋ C)⌋ B)⋀ Y + Σ (terms of form k j((A⌋ C) · (Bj ⋀ Yj))⋀ Bj
′ ⋀ Yj

′),  where  B  and  Y

are  split  and  grade(Y j) ≥ 1.  Let  Z = ⋀i zi  split  like  Y.   Now

(A⌋ C) · (Bj ⋀ Yj) = (Bj ⋀ Yj)⌋ (A⌋ C) = (Bj ⋀ Yj ⋀ A)⌋ C = ±((Bj ⋀ A)⋀ Zj)⌋ C = 0  by  lemma  5.12

(2b) and as Z ⊆ C⊥.

Collected  we  get  (A⌋ C)⌋ (B ⋀ X ) = (A⌋ C)⌋ (B ⋀ Y) = ((A⌋ C) ·B) Y = (B⌋ (A⌋ C)) Y = η PA
B(X ),  as

(A⌋ C) ⊆ Y⊥ and lemma 5.12 (2b).

3. An easy consequence of (1) for X  of grade 1, and then by outermorphism extension.

Example:  In  1,1  let  A = e1 - e2, B = e1 + e2.  Then  C = A⋀B = 2 e1 ⋀e2 = 2 e1 e2,  which  is  invertible,  but  A  and  B  not,  as

A2 = B2 = 0.

A formula for the reflection RA
B(x) in A along B with (A⋀B)⊥ fixed is easily optained as

          PA
B(x) - PB

A(x) = η-1(A C (B⋀x) - (-1)r s η-1(B C (A⋀x) 

RA
B(x) can be extented by outermorphism to RA

B(X ); but a simplification is not at hand.

Orthogonal isomorphims. Reflections

In 3,0 the reflection along a vector a is ℛa(x) = Qa(x) - Pa(x) and the reflection in a is Ra(x) = Pa(x) - Qa(x) = -ℛa(x). 
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As x = Qa(x) + Pa(x), we get ℛa(x) = x - 2 Pa(x) = x - 2 (x⌋ a) a-1 = x - (x a - a


x) a-1 = -a x a-1, and this formula will be general-

ized. 

NB: Building up from this formula with outermorphism is natural, but proofs seems easier starting from a general formula.

Theorem 6.5. For a h-blade A assume ρ = A ·A is invertible, such that A-1 = ρ-1 A.

Define the reflection along A by linearity and

                  ℛA(X ) = ℛ(X ) = (-1)h r A X A-1,  when grade(X ) = r.  Then

1. ℛA(x) = A


x A-1

    ℛ(x) = x- 2 P(x)

    ℛ(P(x)) = -P(x)  and  ℛ(Q(x)) = Q(x)  justify the words “along A”.

2. Also  ℛ2(X ) = X , and ℛ(X ) ·ℛ(Y) = X ·Y.

3. Moreover ℛA is a Clifford algebra isomorphism and universal extension of its restriction to V.

    ℛ is e.g. grade preserving and an outermorphism, as the Automorphism Theorem 5.4 apply to ℛ.

4. Also ℛ(P(X )) = P(X

) , ℛA(X ) = A(X ) ,   ℛ is symmetric, ℛ(X ) ·Y = X ·ℛ(Y)   

5. If V has a finite basis, then  detℛA = (-1)h   

Proof:  Assume grade(A) = h ,   grade(X ) = r and  grade(Y) = s. Then

1. 1a. Obvious.

    (1b)  ℛ  gives  a  transformation  V → V ,  as

ℛ(x) = A


x A-1 = x+ -x A+A


x  A-1 = x- 2 (x A A-1 = x- 2 P(x) ∈ V .

    (2b) ℛ(Q(x)) = Q(x) - 2 P(Q(x)) = Q(x)  and  ℛ(P(x)) = P(x) - 2 P(P(x)) = -P(x)      

2. (2a) ℛ2(X ) = (-1)h r A (-1)h r A-1 X A  A-1 = X

    (2b) It is clearly zero for r ≠ s, and for r = s by theorem 5.2 (2a)

        ℛ(X ) ·ℛ(Y) = (-1)h r+h s A X A-1 A Y A-1 = A X Y A-1 = X Y A-1 A  = X ·Y

3.  By (1b) ℛ gives a transformation V → V .  Also ℛ(1) = 1. 

     From (2a) follows ℛ is bijective and from (2b) that B(ℛ(x), ℛ(y)) = B(x, y). 

     ℛ(X )ℛ(Y) = (-1)h r+h s A X Y A-1 = ℛ(X Y),  as  grade(X Y) ≡ r+ s (mod 2)  imply

(-1)h (r+s) = (-1)h grade(X Y), which 

     shows ℛ is an Clifford algebra homomorphism. By the uniqueness of the universal extension this

proves (3).

4.  (4a,b) Follows from uniquenes of extensions to outermorphisms of (1c).

     The formula is trivial, if  r ≠ s, and otherwise

     ℛ(X ) ·Y = ρ-1(-1)h r 〈A (X A Y) 〉 = ρ-1(-1)h r 〈(X A Y) A 〉 = (-1)h r-h s X ·ℛ(Y) = X ·ℛ(Y)

5.  Counting swappings gives ei eM = (-1)M-1 eM ei and eH eM = (-1)(M-1) H eM eH. 

     Therefore  A eM = (-1)(M-1) h eM A and  ℛA(eM) = (-1)h M A eM A-1 = (-1)h eM

Example. If M is finite and eM invertible, then (-1)M eM x eM
-1 = -x, and otherwise x → -x is not a reflection along a blade. However
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it is a reflection in 1.

Corollary 6.6. Define the reflection in A  as   RA(X ) = R(X ) = ℛA(X

).   Then

1. RA(X ) = (-1)h r A X


A-1  and, if x ∈ V, then 

    RA(x) = -ℛA(x) = -A


x A-1

    R(x) = -x+ 2 P(x)

    R(P(x)) = P(x)  and  R(Q(x)) = -Q(x) supports the words “in A”.

2. Also R2(X ) = X , and R(X ) ·R(Y) = X ·Y.

3. Moreover RA is a Clifford algebra isomorphism and universal extension of its restriction to V.

    R is e.g. grade preserving and an outermorphism, as the Automorphism Theorem 5.4 apply to R.

4. R(P(X )) = P(X ) ,   ℛA(X ) = A(X

),  R2(X ) = X  ,  R is symmetric, R(X ) ·Y = X ·R(Y)   

5. If V has a finite basis, then  det(RA) = (-1)h+M  

NB: ℛA(X ) + RA(X ) = 2 〈X〉even and not X.

Proof:  Obvious from the theorem and earlier results, as e.g. X → X

 is a symmetric automorphism.

Orthogonal isomorphims. Rotations

Definition 6.7 A versor of order h or a h-versor,  U = u1 … uh , as a product of invertible elements

ui ∈ V .

1. As U-1 = uh
-1 … u1

-1 a versor transformation of ℓ(B, V ) is defined by linearity and

      S(X ) = SU(X ) = (-1)h r U X U-1 ,when  grade(X ) = r, e.g.   S(x) = U


x U-1 

1.  As SU = ℛu1 ∘…∘ℛuh  the Automorphism Theorem apply to SU, and, if  V has a finite basis, then

det(SU) = (-1)h 

2. The Clifford group Γ is the multiplicative group of versors. 

    Define Γ+, the rotation versors, as the versors of even order, which obviously is a subgroup of Γ

of index 2.

    The orthogonal isomorphisms V → V is a group under composition ∘ , the orthogonal group O(B).

    The mapping Ψ : U → SU is a multiplicative morphism from Γ into the orthogonal group O(B).

NB:  The form x → U x U-1 also gives orthogonal isomorphisms, but fewer and not with the same sort of uniqueness.

Lemma 6.8. The mapping Ψ : U → SU is a multiplicative morphism from Γ into the orthogonal group

O(B).

Proof:  Follows  from

Ψ(T)∘Ψ(U) = (-1)k s T (-1)h s U X U-1 T-1 = (-1)(h +k) s (T U)X (T U)-1 = Ψ(T U).
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Theorem 6.9.  Assume  is a field not of characteristic 2, V has a finite basis and B is regular. 

1. Then from the Cartan-Dieudonne theorem follows that any orthogonal isomorphism of V can be

expressed as S(x) = U


x U-1, where U is a h-versor with h ≤ n = dim(V ). 

2. ∀x∈V U


x U-1 = T


x T-1  imply T ∈ ⨯ U.

3.  Ψ : Γ → O(B) is onto O(B) with kernel  Ψ-1(idV) = ⨯ 

    Also Ψ maps Γ+ onto O+(B), the orthogonal isomorphisms with determinant 1 called rotations.  

4. Moreover, if  ∀x∈V ψ(x) = T


x T-1 ∈ V, then T is a versor.

Proof: 1. The Cartan-Dieudonne theorem states that an orthogonal isomorphism can be expressed as

a composition of at most n reflections ℛu.

2. If U


x U-1 = T


x T-1 and A = U-1 T, then x A = A


x, which gives 2 x⌋ A = 0. Thus A ∈ \{0}.

3. From (2) and last theorem.

4. Like the proof for Theorem 6.5 (2b), we get  ψ(x) ·ψ(y) = x · y, and  ψ ∈ O(B), as ψ-1(x) = T-1 x T

.

Now from (1) follows ψ = SU for some U, and from (2)  T /U ∈ ⨯.

It is possible to remove some of the redundancy of the versor U without spoiling the group proper-

ties by using the mapping Φ below.

Corollary 6.10. The mapping Φ : U → U U


∈ ⨯ is a multiplicative morphism, Φ(Γ) is a multiplica-

tive group, and Φ(Γ) = Φ(Γ)⨯ 2.

2.  Assume  ⨯ = S × (⨯) 2  as  direct  product  of  multiplicative  subgroups  S  and  (⨯) 2,  like  e.g.

⨯ = {±1} × (⨯) 2 or  ℂ⨯ = {1} × (ℂ⨯) 2. 

Then each U ∈ Γ  can be normalized as t U, such that Φ(t U) ∈ S, and t is unique apart from a

factor ±1. 

Define  pin(B) = Φ-1(S) and spin(B) = pin(B)⋂ Γ+,   pin+(B) = Φ-1(1) and spin+(B) = pin+(B)⋂ Γ+.

If  U ∈ pin(B) , then  SU(x) = s-1 U


x U


, where s = Φ(U) ∈ S

Proof:  1.  U U

= U


U = U U


,  and

Φ(U T) = 〈(U T) (U T)~〉 = (U T) T


U

 = U


U T T


 = Φ(U) Φ(T)

If  U = u1 … uh,  then  U U

= u1

2 … uh
2 ∈ ⨯  and  is  invertible,  as  each  uk  is.  Also

ΦU-1 = uh
-1 … u1

-1 u1
-1 … uh

-1
~
= u1

-2 … uh
-2 ∈ ⨯,  and  Φ(U) ΦU-1 = ΦU-1 Φ(U) = 1.  Thus

Φ(Γ) is a group, as s, t ∈ Φ(Γ) ⇒ s-1, s t ∈ Φ(Γ).

If v ∈ ⨯, then U ∈ Γ ⇔ v U ∈ Γ and therefore s2 Φ(Γ) = Φ(Γ)

2. (a)  Assume Φ(U) = s k2, s ∈ S, then Φ(t U) = s ⇔ s (t k)2 = s ⇔ t = ±k-1.

  (b) Follows from the definition of SU, and U ∈ pin(B) ⇒ U U

= s ∈ S ⇒ U-1 = s-1 U


, s ∈ S.

NB: The concept covering requires topological spaces, which is not the case here in this general setup.  

Example. In Λ(V ) any bijective linear transformation is an orthogonal isomorphism, but none has versor forms.

Example. In 2,1 let u = (e1 + e2) 2 , f1(x) = u e2 x e2 u and f2(x) = -u e3 x e3 u. Then f1 and f2 are in  spin(B).
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Chapter 7  Finer structures in Clifford algebra 

Some isomorphisms of Clifford algebras

Theorem 7.1. Let (ai)  be an orthogonal basis for V , Vκ = V ⊕  aκ,  aκ  orthogonal to V,  aκ
2 = ε

invertible, and Bκ  the extension of B to Vκ. Define a linear mapping f : V → ℓ(Bκ)
+  by u → u aκ.

Then f extends uniquely to an algebra isomorphism F : ℓ(-ε B) → ℓ(Bκ)
+.

Proof: We may assume (ai i ∈ M) is the standard basis for V, and in the index ordering makes κ last.

From  f   linear  and  f (u)2 = u aκ u aκ = -ε u2  follows  the  extension  of  f  by  universality  to

F : ℓ(-ε B) → ℓ(Bκ)
+ as algebra morphism.

Products  ai aκ, i ∈ M  span  ℓ(Bκ)
+  as  algebra,  as  ai aκ aj aκ = -ε ai aj = -ε a{i, j}, i ≠ j,  and  any

aH ∈ A+ is product of 2-grade basis elements. 

F  is  bijective,  as  the  basis  (aK, K finite K ⊆ M)  is  mapped  bijectively  onto  the  basis  

(±εp aK, K even or ± εp aK⋃{κ} K odd K ⊆ M) for ℓ(Bκ)
+.

Example. In the case p,q we get we get F : q,p → p+1,q
+  when ε = 1, and F : p,q → p,q+1

+  when ε = -1.

Thus  q,p-1 ≃ p,q
+  when p ≥ 1, and  p,q-1 ≃ p,q

+  when q ≥ 1. Hence  q,p-1 ≃ p,q-1 when p, q ≥ 1. 

The algebra isomorphism is not as Clifford algebras.

Center. Simplicity.

Definition 7.2. An algebra A is called simple, if A has no twosided ideals other than 0 and A. 

The center Z = Z(A) of an algebra A consists of the elements commuting with all the elements of A.

Theorem 7.3. Assume  is a field of characteristic≠2. Then, 

if M is finite and odd, then Z = Z(ℓ(B)) =  eM +(V0)
+, and otherwise Z = (V0)

+, where V0 is

the radical or kernel of B. 

Proof:  Clearly Z is a linear subspace of ℓ(B).

We have X ∈ Z ⇔ ∀Y∈ℓ(B) : Y X -X Y = 0 ⇔ ∀Y∈ℓ(B) : Y X

-X


Y = 0 ⇔ X


∈ Z.

Also from X0 = 〈X〉even = X +X

  2 and X1 = 〈X〉odd = X -X


  2 follows  X ∈ Z ⇔ X0, X1 ∈ Z.

1. Assume  X ∈ Z. As  ∀i : 0 = (ei X1 -X1 ei) / 2 = ei ⋀ X1, and using theorem 5.2 (11a) we get,  if

M is finite and odd, that X1 ∈  eM, 

and otherwise that X1 = 0. 

DIRECT CONSTRUCTION OF GEOMETRIC ALGEBRA STRUCTURES

 25



Furthermore from ∀i : 0 = (ei X0 -X0 ei) / 2 = ei⌋ X0 follows X0 ∈ (V0)
+  using theorem 5.2 (11b).

2. Verification. From X ∈ (V0)
+ follows ∀i : (ei X -X ei) / 2 = ei⌋ X = 0 and therefore X ∈ Z.

Finally M is finite and odd implies ∀i : ei eM = eM ei and therefore that eM ∈ Z.

Lemma 7.4. For algebra A and f ∈ A assume f is idempotent, f 2 = f . Then

1. (1- f )2 = (1- f ) and f (1- f ) = 0.

2. ℐ- = A f   is a left ideal.

3. P- : X → X f  is an algebraic projection onto ℐ-, such that

    (3bcd):  P-
2 = P-, (1-P-)

2 = (1-P-) and P- (1-P-) = 0, all with 1 = idV.

    Moreover  X ∈ ℐ- ⇒ P-(X ) = X

4. If f ∈ Z(A), then ℐ- is as a twosided ideal, and  P- : A → ℐ- is an algebra homomorphism.

As  (1- f )  has  the  same properties  as  those  mentioned  of   f,  it  give  likewise  rise  to  left  ideal

ℐ+ = A (1- f ) and P+ = 1-P-.

Analogous statements to (1-3) holds and furthermore

5. ℐ- ⊕ ℐ+ = A

Proof:  1. Obvious

2. A ℐ- = A2 f = A f = ℐ-  

3. (3b) P-
2 (X ) = X f 2 = X f = P-(X ) and this imply (3c,d)

  (3e)  X ∈ ℐ- ⇒ X = Y f ⇒ P-(X ) = Y f 2 = Y f = X  

  (3a) P-(X ) = X f ∈ ℐ- and (3e) imply P- is onto ℐ- 

4. P-(X ) P-(Y) = X f Y f = X Y f 2 = X Y f = P-(X Y).

5.  ℐ- +ℐ+ ⊇ (P- +P+) (A) = A and by (3e,d) X ∈ ℐ- ⋂ ℐ+ ⇒ X = P+(X ) = P-(P+(X )) = 0

Theorem 7.5. Assume   is a field of characteristic≠2 and B is regular. Then

1. If M is even or infinite, then ℓV(B) is simple.

2. Assume M  finite and odd. Then

         ℐis a non-trivial ideal  ⇔  ∃λ : ℐ = ℓ(B) (1+ λ eM) and λ2 eM
2 = 1.  

3. Assume M  finite and odd, and  λ2 eM
2 = 1.  Then

  (3a) f± = (1± λ eM) / 2 ∈ Z(ℓ(B)), f± f∓ = 0 and f±
2 = f±. 

  This  gives  projections  and  algebra  homomorphisms  P±(X ) = X f±  onto  proper  ideals

ℐ± = P±(ℓ(B)), such that 

  P- +P+ = Idℓ(B), P- P+ = 0, P±
2 = P±,   and   ℐ- ⊕ ℐ+ = ℓ(B). 

 (3b) P±(X ) ·Y = X ·P±(Y)

 (3d) ℓ(B)+isomorphic to each ideal ℐ± by the restriction of P± to ℓ(B)+.

 (3e) ℓ(B)+ and ℐ± are all simple.

 (3f) The only non-trivial ideals in ℓV(B) are ℐ- and ℐ+.

ALLAN CORTZEN

26 |



Proof: Assume X = ΣK∈ℰ λK eK ≠ 0, λK ≠ 0 belongs to a non-trivial ideal ℐ. 

Also assume X is chosen, such that the expansion has a minimal number of nonzero coefficients. 

As each eK is invertible, then after division with one of them we may assume  ∅ ∈ ℰ and λ∅ = 1.

Let θ(X ) be the proposition: X has an even term, λH eH with a factor ei, i ∈ H,  or an odd term, λH eH

with a factor  ei, i ∈ M\H.

If θ(X ), then X = 1+ λH eH +Xremaining ∈ I and get ei X / ei = 1- λH eH + ei Xremaining / ei ∈ I. 

Therefore  X + ei X / ei  simplified  has  fewer  terms  than  X,  as  the  terms  λH eH  cancel  and  each

ei λK eK / ei = ±λK eK.

This contradiction shows the negation of θ(X ) holds.

1 (Case M even or infinite).  As H odd ⇒ M\H ≠ ∅, X can only have even terms, and here only 1.

Thus  ℐ is trivial and ℓV(B) is simple.

2  (Case  M  odd).   Here  eM ∈ Z.  Let  λ = λM.  As  M = H  is  possible,  X = 1+ λ eM.  Now

(1- λ eM)X = 1- λ2 eM
2 ∈ ℐ ⋂  = {0},  as  the  ideal  is  non-trivial,  and eM

2 = λ-2  is  necessary  for

this, and by (3f) below sufficient.

3. (3a) Follows from Lemma 7.4 follows, as f+ = 1- f-

  (3b) P± is symmetric, as P±(X ) ·Y = 〈X (1± λ eM) Y〉 / 2 = X ·P±(Y).

  (3d) The restriction of P+ to ℓ(B)+ is injective, as the odd part of P+(X ) = X f+  is X / 2. 

    If K is odd, then, as P+ P- = 0,  P+(eK) = P+(P+(eK) -P-(eK)) = P+(λ eK eM).

    Thus P+(eK) = λ σ(K, M) P+(eM\K), where M\K is even and λ σ(K, M) ≠ 0.

    Hence P+(ℓ(B)+) = span {P+(eK) K ∈ ℱ , K is even} = span {P+(eK) K ∈ ℱ } = ℐ+.

    Likewise can be proved that the restriction of P- to ℓ(B)+ is an algebra isomorphism. 

  (3e) ℓ(B)+ is simple follows from theorem 7.1 by the isomorphism  ℓ(-ε B) → ℓ(Bκ)
+, as the

basis for ℓ(-ε B) has even size M - 1.

  (3f)  Let ℐ be a non-trivial ideal such that f+ = (1+ λ eM) ∈ ℐ. 

    Hence f+ ∈ ℐ ⋂ ℐ+  implies ℐ+ ⊆ ℐ.  As ℐ ⋂ ℐ-  is an ideal and ℐ-  is simple, we must have

ℐ ⋂ ℐ- = {0}.

    That  ℐ ⊆ ℐ+  follows  from   P-(I) = I (1- λ eM) / 2 ⊆ ℐ ⋂ ℐ- = {0}  and

X ∈ I ⇒ X = P-(X ) +P+(X ) = P+(X ) ∈ ℐ+. Thus ℐ = ℐ+.

Theorem 7.6. Assume B is regular and   is a field of characteristic≠2, that M is finite >1 and odd,

and also that λ ∈  can be found, such that λ2 eM
2 = 1.   Then

1. In  (V , B) exists besides ℓV(B) only the algebras U± = ℓ (B) /ℐ±.

2. If eM

= eM, then ℓ(B) /ℐ± has reversion and no conjugation. 

Otherwise, if  eM = eM, then  ℓ(B) /ℐ± has conjugation and no reversion.  
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Proof: Set f± = (1± λ eM) / 2.

1. By theorem 7.4 ℓV(B) has proper ideals ℐ±  and only these, and by theorem 3.5, it remains to

show properties 1-3 in definition 1.1 for U±.

The natural mapping  ϕ± : ℓ(B) → U± has kernel ℐ±.

Assume  e.g.   k+ x ∈ ℐ- ⋂ ( ⊕ V ).  Then  k+ x = Y f-  giving  (k+ x) f+ = 0  or

k+ x+ λ k eM + λ x eM = 0. As M > 1, these four elements has different grades, if not equal to zero.

Likewise for k+ x ∈ ℐ+ ⋂ ( ⊕ V ). 

Hence k = x = 0, and ϕ±  is injective on  ⊕ V , which can be identified with its image by ϕ±. This

gives property 3 and 1, 2 are now obvious.

2. If eM

= eM, then f±


= f± and ℐ± = (ℐ±)

~, whence  ℓ(B) /ℐ± may have reversion transferred.

Likewise, if eM

= -eM, i.e.  eM = eM, then ℓ(B) /ℐ± may have  conjugation transferred.

As by theorem 5.6 a main automorphism does not exists in ℓ(B) /ℐ±, only one of the transforma-

tions reversion and conjugation can exist.

Example. In 1,0,1 bilinearform B is not regular, has diagonal matrix (1, 0) and ℐ = e2 1,0,1 is the ideal span(e2, e12). 

The algebra 1,0,1 ℐ ≃ 1 is spanned by {1, e1}, which has a main automorphism. Thus regularity is essential in theorem 5.6.

Example. p,q. If p - q ≡ 2 h + 1 (mod 4) , then eM
2 = (-1)h.

Hence if p + q is infinite, even or p - q ≡ 3 (mod 4), then  p,q is simple. 

Otherwise p - q ≡ 1 (mod 4), and  p,q = ℐ-⊕ℐ+. 

If furthermore q is odd/even, then p,q ℐ± has conjugation/reversion according to the parity of q.  

This  follows  by  interger  calculation,  as  q = 2 r - δ  and  p = q + 1 + 4 s  imply  that  the  reversion  exponent

(p + q) (p + q - 1) /2 ≡ δ (mod 2).

Example. ℂp. If p is even or infinite ℂp is simple. 

Otherwise, as eM
2 = λ-2 can be solved for λ, ℂp has ideals ℐ±.

If p ≡ 1 (mod 4), then ℂp ℐ± has a reversion.   

If p ≡ 3 (mod 4), then ℂp ℐ± has a conjugation.   

Example. ℂ3. As eM = eM and ℐ± = ℂ3 (1 ± eM) /2 = ℐ±,  ℂ3 ℐ± has a conjugation transferred from ℂ3.

Linear independency Clifford products. The quantization transformation

Lemma 7.7. Let xi ∈ V, then x1 x2 … xp - x1 ⋀ x2 ⋀…⋀ xp ∈ Λ<p(V ) .

Proof: Induction after p is used. It is trivial for p = 0, 1. Assume the statement is true for 1 < p < r. 

If X = x2 … xr and Y = x2 ⋀…⋀ xr, then x1 X - x1 ⋀ Y = x1 ⋀ (X -Y) + x1⌋ (X -Y) + x1⌋ Y ∈ Λ<r.

The assertion follows now from the induction principle.

Theorem 7.8. Let (xi i ∈ I) be linear independent in V. 
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1. Then (xK K ⊆ I, K finite) is linear independent.  

2. Assume (xi i ∈ I) is a basis for V , and K ⊆ I, K finite.

Then the quantization transformation f : (V ) → (V ) is well-defined by linearity and f (x⋀K) = xK.

Moreover f is bijective and (xK) is a basis for (V ).  

   

Proof:  1.  Assume  Y = ΣK∈ℰ λK xK  with  all  λK ≠ 0  and  ℰ ≠ ∅,  and  set  X = ΣK∈ℰ λK x⋀K  and

r = max {K K ∈ ℰ}.

According to lemma 7.7, X -Y = ΣK∈ℰ λK(x⋀K - xK) ∈ Λ<r(V ). If Y = 0, this gives a contradiction,

and the assertion follows.

2. As (x⋀K) is a basis for (V ),  f is well-defined and by the proof of (1) injective.

If f  is not surjective, select if possible X ∈ (V )\ f ((V )) with lowest grade of highest grade term.

Then X ≠ 0.

If  X - f (X ) ∈ f ((V ))  then  X ∈ f ((V )),  which  is  a  contradiction.  Hence

X - f (X ) ∈ (V )\ f ((V )), and has according to lemma 7.7 lower highest grade than X, which gives

a contradiction. Thus f  is bijective and maps a basis onto a basis.

Parity. Twisted algebra

Definition 7.9.   In ℓ(B) define parity of X by par(X ) = p ⇔ grade(X ) ≡ p (mod 2).

Also set ℓ(B)- = {X par(X ) = 1} and ℓ(B)+ = {X par(X ) = 0} 

Parity makes ℓ(B) a graded algebra:    par(X ) = r and par(Y) = s ⇒ par(X Y) = r+ s (mod 2).

Proof:  Follows from theorem 2.2, as factor reductions for products are even in number.

With a new product, X τ Y in ℓ(B, V ) we get an algebra ℓ(B, V )tw isomorphic to ℓ(-B, V ).

Definition 7.10.  To every Clifford algebra ℓ(B, V ) is associated a twisted algebra ℓ(B, V )tw  in

the  same  linear  space  with  multiplication  defined  by  linearity  and  X τ Y = (-1)r s X Y  when

par(X ) = r and  par(Y) = s

1. This gives an algebra structure, such that x τ x = -x2 for x ∈ V. The twisted of the twisted alge-

bra is the original.

2. The universal extension of idV is an algebra isomorphism  F : ℓ (-B, V ) → ℓ(B, V )tw.

Proof: Let par(X ) = r,  par(Y) = s and  par(Z) = h.

1. Most are obvious. As associative law is multilinear, it needs only be verified for homogeneous

elements.  We  get  (X τ Y) τ Z = (-1)(r+s) h ((-1)r s X Y) Z = (-1)r s+r h+s h X Y Z,  and

X τ(Y τ Z) = (-1)r (s+h) X (-1)s h Y Z = (-1)r h+r h+s h X Y Z.

2. As F(eK) = ±eK, F maps a basis onto a basis bijectively, and therefore is bijective. Thus F is an
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isomorphism.

Chapter 8  Chevalley’s construction of Clifford algebras from tensor algebras

Chevally’s construction of Clifford algebras is based on tensor algebra and do not require all the properties in definition 1.1.

He start with a quadratic form, but he proves in a short note that it is equivalent to use any bilinear form possible non-symmetric [2,

p.76 I.2.2].

In this chapter B is an arbitrary bilinear form on V .

This universality statement is a key point:

Theorem 8.1. Let  =  (V , ⊗) be the tensor algebra over V. For any algebra A over  and any

linear mapping τ : V → A, there is a unique algebra morphism Τ : → A that extends τ. 

 

Definition  8.2.  Let  ℐ = ℐ(V , B)  be  the  two-sided  ideal  in   =  (V )  generated  by

 = {x ⊗ x-B(x, x) 1 x ∈ V }.

The Clifford algebra  ℓV(B) is then defined as the quotient algebra  ℓ =  /ℐ together with

π
 : → ℓ, the canonical algebra morphism. 

Example. Let  = ℤ6, V = ℤ3×ℤ6, (e1, e2) the standard  basis and B = diag(1, 1). This imply 3 e1 = 6 e2 = 0.

Moreover π(3) = 3 1ℓ = 3 π

e1

2 = 3 π

(e1) π


(e1) = π


(3 e1) π


(e1) = 0 and  π(3 e2) = π


(3) π(e2) = 0, but 3 ≠ 0 in   and 3 e2 ≠ 0 in V.

Thus π is neither injective on  or on V.

This simple approach gives the problem that π  need not to be injective on  or on V, implying  and V can not generally be identified

with their  images by π.  Thus the universality principle in definition 1.1 is  unusable.  However the Chevally’s construction is  in

harmony with a universality principle, not for the algebras, but for the morphisms π
 :  → ℓ.

 

Definition 8.3. Let (V , B) be the category of linear mappings f  from V into an algebra A, such

that f (x)2 = B(x, x) 1A. 

A mapping ω : V → U in (V , B) is said to be universal, if  for every linear mapping f : V → A in

(V , B),  there is a unique algebra morphism F : U → A such that F∘ω = f .   (i.e.  f : V ⟶
ω

U ⟶
F

A)

As we shall show a Cliford algebra in the version presented in definition 1.1 is also a Chevalley Cliford algebra 

Theorem 8.4. 

1. π = π


V from definition 8.2 is a universal object in (V , B). 

2. Assume B is symmetric. 

   Then π : V → ℓ  is injective and has an extension  G : ℓV(B) → ℓ  to an algebra isomor-

phism, and therefore  G(1ℓV (B)) = 1ℓ.

ALLAN CORTZEN

30 |



Proof: 

V ⊂  ⟶
π


  ℐ = ℓ

id↓ Τ↓ F↓

V ⟶
f

A = A

1. π is an object in  (V , B), as π(x) = x ⊗ x+ℐ = B(x, x) 1 +ℐ = B(x, x) 1ℓ .

If  f : V → A  is  in  (V , B),  then  by  tensor  universality  there  is  an  unique  algebra  morphism

Τ : → A that extends f. 

As  Τ(x ⊗ x) = Τ(x)2 = f (x)2 = B(x, x) 1A = Τ(B(x, x) 1)  implies   ⊆ Τ-1(0)  and  therefore

ℐ ⊆ Τ-1(0),  there exists an algebra morphism F : ℓ → A, such that Τ = F∘π
 . Thus F∘π = f . 

If  G : ℓ → A  is  an  algebra  morphism,  such  that  f = G∘π,  then  G∘π
  is  an  algebra  morphism

 → A that extends f.

Therefore by theorem 8.1  Τ = G∘π
. As π is onto ℓ, we get G = F showing F is unique.

2. Assume B is symmetric. 

From  (1)  follows,  that  to  idV : V → ℓV(B)   there  exists  an  unique  algebra  morphism

F : ℓ → ℓV(B), such that F∘π = idV. Thus π is injective.

From universality of ℓV(B) follows, that to  π : V → ℓ  there exists an unique algebra morphism

G : ℓV(B) → ℓ, such that G V = π. 

As F∘G : ℓV(B) → ℓV(B)  is an algebra morphism that on V  is the identity, then universality of

ℓV(B) implies F∘G = idℓV (B)

Now G∘F : ℓ → ℓ is an algebra morphism for which G∘F∘π = G∘ idV = π. Then by universal-

ity of ℓ from (1) there is a unique algebra morphism H : ℓ → ℓ such that H ∘π = π, which of

course is idℓ. Thus  G∘F = idℓ.

Hence G : ℓV(B) → ℓ is an isomorphism and both G V = π and G  are injective

Even for symmetric bilinearforms Chevalley Cliford algebras are more general that the version presented in definition 1.1.

Example. Assume B is regular and   is a field of characteristic≠2, M = {1}, and e1
2 = 1.   

As dim(ℓ (B)ℐ± = 1, ⊕V  can not be mapped injectively into ℓ(B)ℐ±. Thus these algebras does not comply with definition 1.1.

However f : V → ℓ(B)ℐ±, the quotient mapping of idV , belongs to (V , B), as f (x)2 = x2 + ℐ± = B(x, x) + ℐ±.

Hence ℓ(B)ℐ± Chevalley Cliford algebras, and the only besides ℓ(B) and the null-algebra in (V , B).

Conclusion

   

On elementary basis the different algebras are compactly constructed.

An extensive formula collection is proved.

The universality principle is described, and its forcefulness demonstrated in many ways: 
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    To fully define Clifford algebras.

    To prove in-dependency of orthogonal basis. 

    To define the main automorphism and the reversion.

    In various proofs.

    To establish connection to Chevalley's tensor based Clifford algebras construction.

    Non-universal Clifford algebra’s.

Several types of projections are treated among which is parallel projection.

A comprehensive formula collection is established.

Precise conditions for simplicity are found.

Various conditions for non-universality is found as well as connections to the main automorphism,

the reversion, and the Clifford conjugation.
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