Geometric Algebra formula collection v.2.0

Chapter 1 Definition of a Clifford algebra

Definition 1.1. A Clifford algebra U over B, is an algebra containing V, such that 1. $\forall_{x \in V} : x^2 = B(x, x) \mathbf{1}_U$ 2. V generates U 3. $V \cap \mathbb{K} \mathbf{1}_U = \{0\}$. Let $\mathcal{A}(V, B)$ be the category of Clifford algebras over B. U is called (initial-) **universal** in $\mathcal{A}(V, B)$, if 4. Any linear mapping $f : V \to A$ into an algebra A, such that $f(x)^2 = B(x, x) \mathbf{1}_A$, has a unique exacortzen@gmail.comfacortzen@gmail.comtension to algebra morphism $F : U \to A$. This extension is called the universal extension.

Theorem 1.2. Assume algebras U_i are universal in $\mathcal{A}(V_i, B_i)$, $f: V_1 \to V_2$ is \mathbb{K} -linear and $f: V_1 \to V_2$ is \mathbb{K} -linear. Then f has a unique extension, $F: U_1 \to U_2$ to an algebra morphism, which is an isomorphism, if f is bijective.

Corollary 1.3. An universal algebra in $\mathcal{A}(V, B)$ is uniquely determined aside from isomorphisms fixing V.

Corollary 1.4. Assume algebras U_i are universal in $\mathcal{A}(V_i, B_i)$ and $f_i : V_i \to V_{i+1}$ is \mathbb{K} -linear. Let $F_i : U_i \to U_{i+1}$ be the unique extensions to algebra morphisms. Then the unique extension of $f_k \circ \ldots \circ f_1$ to an algebra morphism is $F_k \circ \ldots \circ F_1$.

Chapter 2 Construction of a universal Clifford algebra

 $\begin{array}{l} Definition \ 2.1. \ Let \ for \ sets \ H, \ J \in \mathcal{F} \\ \alpha(H, \ J) = \Pi \ (-1) \ \text{for} \ (h, \ j) \in H \times J \ \text{and} \ h > j \\ \beta(H, \ J) = \Pi \ q(e_i) \ for \ i \in H \ \bigcap J \ , \\ \sigma = \alpha \ \beta \end{array}$

Theorem 2.2. Define a product $(X, Y) \rightarrow X Y$ in W by $e_H e_J = \sigma(H, J) e_{H \triangle J}$ and bilinearity. Then W becomes a Clifford algebra in $\mathcal{A}(V, B)$.

Lemma 2.3. $\sigma(H, J) \sigma(H \triangle J, K) = \sigma(H, J \triangle K) \sigma(J, K),$

Corollary 2.4. $e_I = \prod_I e_i$.

Theorem 2.5. 1. W is universal in $\mathcal{A}(V, B)$. Hence W is uniquely determined by universality in $\mathcal{A}(V, B)$ aside from isomorphism. W is denoted $\mathcal{C}\ell(B, V)$ or $\mathcal{C}\ell(B)$. 2. If $(a_i \mid i \in M')$ be an orthogonal basis for V, then $(a_K \mid K \subseteq M', K \text{ finite})$ is a basis for $\mathcal{C}\ell(B, V)$. 3. The Clifford product is independent of selection of orthogonal basis, if the product is constructed in $\mathcal{C}\ell(B, V)$.

Definition 2.6. Let $\mathbb{R}^{p,q,r}$ be a real vector space of dimension n = p + q + r with a symmetric bilinearform B that in diagonal form has (p, q, r) times (1, -1, 0)'s respectively in that order. To this correspond a Clifford algebra $\mathbb{R}_{p,q,r}$. If r = 0, r can be omitted.

The complex case $\mathbb{C}_{p,r}$ *is defined likewise, but without q and* -1*.*

Chapter 3 The Grassmann algebra over V

Theorem 3.1. In $\Lambda(V)$ define the submodule of elements of grade $r \in \mathbb{Z}$ by $\Lambda_r(V) = \text{span} \{ \wedge_{i=1}^r a_i \mid a_i \in V \}$ for $r \ge 0$ and otherwise $\Lambda_r(V) = \{0\}$. This makes $\Lambda(V)$ a graded algebra, as obviously $\Lambda_r(V) \land \Lambda_s(V) \subseteq \Lambda_{r+s}(V)$. Also define $x \to \langle x \rangle_r$, as the projection on $\Lambda_r(V)$ along $\bigoplus_{i \ne r} \Lambda_i(V)$, and $\langle x \rangle = \langle x \rangle_0$. Set $\Lambda_{< p}(V) = \bigoplus_{i < p} \Lambda_i(V)$, and also $x \to \langle x \rangle_R = \bigoplus_{r \in R} \langle x \rangle_r$, where R is a subset of \mathbb{Z} . Then

1. $\Lambda(V) = \bigoplus_r \Lambda_r(V)$ and $\Lambda_r(V) \land \Lambda_s(V) = \Lambda_{r+s}(V)$. If |M| is finite, then $\operatorname{rank}(\Lambda_{|M|}(V)) = 1$ and $\Lambda_r(V) = 0$ for r > |M|

2. $x \land x = 0$ and $x_1 \land x_2 = -x_2 \land x_1$

3. $x_1 \land x_2 \land \ldots \land x_p$ is multilinear and alternating in the x-variables

Theorem 3.2. (Extension by outermorphism). A K-linear mapping $f: V_1 \to V_2$ has a unique extension, $f_{\wedge}: \Lambda(V_1) \to \Lambda(V_2)$ to an algebra morphism, which is grade preserving. Moreover f_{\wedge} is bijective, if f is. Proof: As $f(x) \wedge f(x) = 0$, the assertion follows from universal extension, which is grade preserving, as an algebra morphism.

Theorem 3.3 (The Invariant basis property). Two bases for V have the same finite size or are both infinite.

Theorem 3.4. Assume M is finite. Then with respect to any basis

- 1. $|M| = \operatorname{rank}(V) \ and \ |M| = \max\{r \mid \Lambda_r(V) \neq 0\}$
- 2. $\Lambda_{|M|}(V) = \mathbb{K} e_M$
- 3. rank $(\Lambda_r(V)) = \binom{|M|}{n}$

4. rank($\Lambda(V)$) = 2^{|M|} and rank($\Lambda(V)^+$) = rank($\Lambda(V)^-$) = 2^{|M|-1}

Theorem 3.5. From $C\ell(B, V)$ any non isomorphic Clifford algebra A in $\mathcal{A}(V, B)$ can be found as a quotient $C\ell(B, V)/I$ with ideal $I \neq \{0\}$.

If M is finite, then A in $\mathcal{A}(V, B)$ is non-universal \Leftrightarrow rank $(A) = 2^k$ and k < |M|.

Definition 3.6. The geometric algebra $\mathcal{G}(B, V)$ or $\mathcal{G}(V)$ is the double algebra of $\mathcal{C}\ell(B, V)$ and $\Lambda(V)$ in the same space.

For $x_i \in V$ set $x_I = \prod_{i \in I, \uparrow} x_i$ and $x_{\land I} = \land_{i \in I, \uparrow} x_i$. By construction $e_{\land I} = e_I$.

Chapter 4 Morphisms

Definition 4.1. To every algebra A is in the same linear space associated an opposite algebra A° with multiplication $X \circ Y = YX$.

The linear identity $A \to A^o$ is an anti-automorphism, and is also denoted $o: A \to A^o$. Moreover $A^{oo} = A$ and $o^2 = id_A$. That this multiplication makes A^o an algebra is easily verified, and also that $A^{oo} = A$ and $o^2 = id_A$.

Theorem 4.2. For any algebra A over \mathbb{K} and any linear mapping $f: V \to A$ such that $f(x)^2 = B(x, x) \mathbf{1}_A$, there

exists a unique algebra anti-morphism F^{0} : $C\ell(B, V) \rightarrow A$, which extends f. This extension is also called the universal anti-extension.

Corollary 4.3. Assume algebras U_i belongs to $\mathcal{A}(V_i, B_i)$ and $f_i : V_i \to V_{i+1}$ is \mathbb{K} -linear.

Then f_i has a unique extension, $U_i \rightarrow U_{i+1}$ to an algebra anti-morphism, which is an anti-isomorphism, if f_i is bijective.

Let $F_i: U_i \rightarrow U_{i+1}$ be a morphism or an anti-morphism and $F = F_k \circ ... \circ F_1$. If the number of anti-morphism in the composition is odd, then F is anti-morphism, and otherwise a morphism.

Definition 4.4. Let U be a Clifford algebra in $\mathcal{A}(V, B)$, not necessarily universal. As proved a linear mapping $f: V \to V$ has at most one extension to an automorphism or anti-automorphism of U. If they exists,

the main or grade automorphism $X \to \hat{X}$ is the extension of $f: V \to V$, f(x) = -x to an automorphism of U. the reversion $X \to \tilde{X}$ is the extension of $f: V \to V$, f(x) = x to an anti-automorphism of U. the Clifford conjugation $X \to \overline{X}$ is the extension of $f: V \to V$, f(x) = -x to an anti-automorphism of U.

Theorem 4.5. $C\ell_V(B)$ is extended to a geometric algebra to make the grade concept available.

1. In $Cl_V(B)$ the main automorphism, the reversion, and the Clifford conjugation exists.

2. For the main automorphism holds grade $(X) = r \Rightarrow \hat{X} = (-1)^r X$

3. For the reversion holds $(X Y)^{\sim} = \tilde{Y}\tilde{X}$, $(a_1 a_2 \dots a_r)^{\sim} = a_r \dots a_2 a_1$ for $a_i \in V$ and grade $(X) = r \Rightarrow \tilde{X} = (-1)^{r(r-1)/2} X$

4. For the Clifford conjugation holds $\overline{X} = \hat{X}^{\sim}$ and grade $(X) = r \Rightarrow \overline{X} = (-1)^{r(r+1)/2} X$

5. These three mappings are grade preserving, involutions, commuting and independent of the B. Each one is the composition of the two others.

Chapter 5 Basic structure of Geometric algebra

Definition 5.1. Set $\chi_S = 1$, if the proposition S is true, and else zero. Define in $\mathcal{G}(B, V)$ compositions $\cdot,]$ and \lfloor by bilinearity by

 $e_H \cdot e_J = \chi_{H=J} e_H e_J$, the scalar product, $e_H \mid e_J = \chi_{H\subseteq J} e_H e_J$, the left contraction, $e_H \mid e_J = \chi_{H\supseteq J} e_H e_J$, the right contraction. We already know from the product definition based on the α and β functions that $e_H \wedge e_J = \chi_{H \cap J= \emptyset} e_H e_J$

Theorem 5.2. In a geometric algebra $\mathcal{G}(B, V)$ holds

1. $xX = x \rfloor X + x \land X$ and $Xx = X \land x + X \lfloor x$ $x \cdot y = B(x, y) \downarrow_G$,

- 2. If grade(X) = r and grade(Y) = s, then $X \cdot Y = \langle X Y \rangle = \langle Y X \rangle = Y \cdot X$, $X \rfloor Y = \langle X Y \rangle_{s-r}$, $X \lfloor Y = \langle X Y \rangle_{r-s}$ and $X \wedge Y = \langle X Y \rangle_{r+s}$ The three main involutions are symmetric, $\hat{X} \cdot Y = X \cdot \hat{Y}$, $\tilde{X} \cdot Y = X \cdot \tilde{Y}$, $\overline{X} \cdot Y = X \cdot \overline{Y}$
- 3. If grade(X) = r and grade(Y) = s, then $r \neq s \Rightarrow X \cdot Y = 0$, $Y \lfloor X = (\tilde{X} \rfloor \tilde{Y})^{\sim} = (-1)^{(s+1)r} X \rfloor Y$ and $X Y = \sum_{i=|r-s| \text{ step } 2}^{r+s} \langle X Y \rangle_i$
- 4. $(X \wedge Y) \rfloor Z = X \rfloor (Y \rfloor Z)$ and $(X \wedge Y) \cdot Z = X \cdot (Y \rfloor Z)$
- 5. $x \downarrow (X Y) = (x \downarrow X) Y + \hat{X} (x \downarrow Y)$

- $x \land (X Y) = (x \rfloor X) Y + \hat{X} (x \land Y)$ $x \land (X Y) = (x \land X) Y \hat{X} (x | Y)$
- $x \mid (X Y) = (x \land X) Y \hat{X} (x \land Y)$
- 6. $x \downarrow (X \land Y) = (x \downarrow X) \land Y + \hat{X} \land (x \downarrow Y)$ $x \land (X \downarrow Y) = (x \downarrow X) \downarrow Y + \hat{X} \mid (x \land Y)$
- 7. $x \rfloor (x_1 x_2 \dots x_p) = \sum_{k=1}^p (-1)^{k-1} x_1 x_2 \dots (x \rfloor x_k) \dots x_p$
- 8. $x \downarrow (x_1 \land x_2 \land \dots \land x_p) = \sum_{k=1}^p (-1)^{k-1} x_1 \land x_2 \dots \land (x \downarrow x_k) \dots \land x_p$
- 9. $x_1, x_2, ..., x_p$ are pairwise orthogonal $\Rightarrow \prod_{i=1}^p x_i = \wedge_{i=1}^p x_i$
- 10. $xX \hat{X}x = 2x | X \text{ and } xX + \hat{X}x = 2x \land X$
- 11. $\forall_{x \in V} (x \land A = 0) \Leftrightarrow (A \in \mathbb{K} e_M, if |M| \text{ is finite, and otherwise } A = 0).$ Assume \mathbb{K} is a field or the weaker condition $\mu e_i^2 = 0 \Rightarrow (\mu = 0 \text{ or } e_i^2 = 0)$ for $i \in M, \ \mu \in \mathbb{K}$. Then $\forall_{x \in V} (x \downarrow A = 0) \Leftrightarrow A \in \mathcal{G}(V_0), \text{ where } V_0 \text{ is the radical or kernel of } B. (NB: Always <math>\mathbb{K} \subseteq \mathcal{G}(V_0)$)
- $12. (x_1 \wedge x_2 \dots \wedge x_r) \cdot (y_r \wedge \dots \wedge y_2 \wedge y_1) = \Sigma_{\sigma} s_{\sigma} (x_1 \cdot y_{\sigma(1)}) \dots (x_r \cdot y_{\sigma(r)})$

where summation is over all permutations σ of $\{1, ..., r\}$.

- 13. Factor expansion of $x_{\wedge K}$: Let $X = x_{\wedge K}$ and $B \in \Lambda_s(V)$. If $\tau_H = \alpha(H, K \setminus H) (B \cdot x_{\wedge H}) \in \mathbb{K}^*$), then $B \rfloor X = \Sigma_{H \subseteq K, |H| = s} \tau_H x_{\wedge K \setminus H}$
- *) α is from definition 2.1: $\alpha(H, J) = \prod (-1)$ for $(h, j) \in H \times J$ and h > j

Determinant Theorem 5.3. Let $f: V \rightarrow V$ be linear mapping.

- 1. If V has a finite basis, then the determinant det(f) is defined by $F(e_M) = det(f) e_M$ independent of basis.
- 2. Moreover $(f \circ g)_{\wedge} = f_{\wedge} \circ g_{\wedge}$, det $(f \circ g) = det(g) det(f)$, and det $(f^{-1}) det(f) = 1$ when f is bijective.
- 3. Assume m = |M|, $M = \{1, ..., m\}$ and $f(a_s) = \sum_i \theta_s^i a_i$ in some basis $(a_i | i \in M)$. Then

 $\det(f) = \Sigma_{\sigma} \operatorname{sign}(\sigma) \left(\theta_{\sigma(1)}^{1} \dots \theta_{\sigma(m)}^{m} \right), \text{ where summation is over all permutations } \sigma \text{ of } M.$

Automorphism Theorem 5.4. Let $f: V \to V$ be linear mapping, such that $f(x)^2 = B(x, x) \mathbf{1}_A$. Then f has two universal extensions:

To an outermorphism $f_{\wedge} : \Lambda(V) \to \Lambda(V)$, and to Clifford algebra isomorphism $F : C\ell_V(B) \to C\ell_V(B)$.

Assume B(f(x), f(y)) = B(x, y), or \mathbb{K} is a field not of characteristic 2. Then f_{\wedge} is called the universal extension of f to $\mathcal{G}(B, V)$, as

 $F = f_{\wedge}$, and thus is an outermorphism, and furthermore grade preserving, an orthogonal isomorphy, an isomorphy for \rfloor and \lfloor , and commutes with the three main involutions.

Anti-automorphism Theorem 5.5. Let $f: V \to V$ be linear mapping, such that $f(x)^2 = B(x, x) \mathbf{1}_A$. Then f has two universal anti-extensions:

To an anti-outermorphism $f^{\tau}_{\wedge} : \Lambda(V) \to \Lambda(V)$, and to Clifford algebra anti-isomorphism $F^{\tau} : C\ell_V(B) \to C\ell_V(B)$. Assume B(f(x), f(y)) = B(x, y), or \mathbb{K} is a field not of characteristic 2. Then f^{τ}_{\wedge} is called the universal anti-extension of f to $\mathcal{G}(B, V)$, as

1. $F^{\tau} = f^{\tau}_{\wedge}$, and thus is an anti-outermorphism, grade preserving, an orthogonal isomorphism and commutes with the three main involutions. Furthermore $F^{\tau}(X \downarrow Y) = F^{\tau}(Y) \lfloor F^{\tau}(X)$ and $F^{\tau}(Y \lfloor X) = F^{\tau}(X) \rfloor F^{\tau}(Y)$. 2. If V has a finite basis, then $F^{\tau}(e_M) = (-1)^{|M| \cdot |M| - 1/2} \det(f) e_M$.

Theorem 5.6. Assume B is regular and \mathbb{K} is a field of characteristic $\neq 2$. Then A is universal in $\mathcal{A}(V, B) \Leftrightarrow A$ has a main automorphism

Definition 5.7. A list of elements in a module is linear independent, if the only (finite) linear combination of the elements giving zero is that with zero factors. Linear dependent means not linear independent. Obviously holds: A list of elements is linear independent \Leftrightarrow every finite sublist is linear independent

Theorem 5.8. Let H be finite. Then A: $(x_h | h \in H)$ *is linear independent* \Leftrightarrow B: $x_{\wedge H}$ *is linear independent* \Leftrightarrow C: $(x_{\wedge K} | K \subseteq H)$ *is linear independent*

Corollary 5.9. $S = (x_1, x_2, ..., x_p)$ *is linear independent* \Leftrightarrow $S_{\wedge} = x_1 \wedge x_2 \wedge ... \wedge x_p$ *is linear independent*

Corollary 5.10. *Allow* $H_0 \subseteq M$ *to be infinite. Then* $(x_h | h \in H_0)$ *is linear independent* \Leftrightarrow $(x_{\wedge K} | K \subseteq H_0, K$ finite) *is linear independent*

Definition 5.10. If U is a submodule of V, then set $\Lambda(U) = \text{span} \{ \wedge_{i=0}^{m} U \mid m \in \mathbb{N} \}$, which obviously is the Grassmannalgebra generated by U. Also set $\Lambda_{>0}(U) = \text{span} \{ \wedge_{i=1}^{m} U \mid m \in \mathbb{N} \}$.

Theorem 5.11. *Let* $A = a_{\wedge H}$ *be a blade.*

Define modules $V_A = \{x \in V \mid x \land A = 0\}$, $V_{A\perp} = \{x \in V \mid \forall_{h \in H} x \cdot a_h = 0\}$ and set $A^{\shortparallel} = \Lambda(V_A)$, $A^{\perp} = \Lambda_{>0}(V_{A\perp})$. Obviously span $\{a_h \mid h \in H\} \subseteq V_A$ implying $\Lambda(\{\text{span } \{a_h \mid h \in H\}) \subseteq A^{\shortparallel}$. Moreover also $V_1 = \{0\}$ and $V_{1\perp} = V$ and $1^{\shortparallel} = \{0\}$, $1^{\perp} = \Lambda_{>0}(V)$.

Omitting \square *like in* $X \subseteq A$ *instead of* $X \subseteq A^{\square}$ *can be used, if it is clear that* A *means an algebra and not a blade. Inclusions like* $X \subseteq A^{\square}$ *or* $X \subseteq A^{\bot}$ *may be used for elements, as in* $e_1 \subseteq A^{\square}$ *meaning* $\{e_1\} \subseteq A^{\square}$ *Then*

1. $X \in \text{span} \{a_{\wedge H_1}, \dots, a_{\wedge H_k} \mid \forall_{h \in H} H_h \subseteq H\} \Rightarrow X \subseteq A^{\shortparallel}$

NB: The opposite inclusion is true, if V is a vector space; but not generally for modules.

- 2. $B \rfloor A \subseteq A^{\shortparallel}$
- 3. $C \rfloor A = C A$, when $C \subseteq A^{\parallel}$

4. $A^2 = A \rfloor A = A \cdot A$ and A is invertible $\Leftrightarrow A \cdot A$ invertible $\Rightarrow A^{-1} = A/(A \cdot A)$

5. Assume A is invertible. Then span $\{a_h \mid h \in H\} = V_A$.

NB: In Corollary 6.2.5 is proved: A invertible $\Rightarrow V = V_A \oplus V_{A\perp}$

```
Lemma 5.12. Let A be a blade. Then

1. If C \subseteq A^{n}:

(C \rfloor B) A = C \land (B A)

(C \rfloor B) \rfloor A = C \land (B \rfloor A)

(C \land B) A = C \rfloor (B A)

(C B) \rfloor A = C (B \rfloor A)

2. If C \subseteq \mathbb{K} + A^{\perp}:

(C \rfloor B) A = C \rfloor (B A)

(C \rfloor B) \land A = C \rfloor (B \land A)

(C \land B) A = C \land (B A)
```

 $(CB) \land A = C(B \land A)$

Chapter 6 Geometric transformations

Theorem 6.1. For a h-blade A assume $\rho = A \cdot A$ is invertible, thus $A^{-1} = \rho^{-1} A$. Define the projection on A as $P_A(X) = P(X) = (X \rfloor A) \rfloor A^{-1}$. 1. Then P is grade preserving, 2. $P(X) = (X \rfloor A) A^{-1}$, $P(X) = \rho^{-1} A (A \lfloor X) = \rho^{-1} A \lfloor (A \lfloor X) \rfloor A^{-1}$, $P(X) \subseteq A$, $P(X) \subseteq P(X) \downarrow A \rfloor$ 3. $X \subseteq A \Rightarrow P(X) = X$, $P(X) \subseteq A$, $P^2(X) = P(X)$ 4. $P(\Lambda(V)) = A^{\parallel}$, $P(V) = V_A$, $P(A^{\perp}) = \{0\}$. 5. P is symmetric, $X \cdot P(Y) = P(X) \cdot Y$ 6. Moreover P is an outermorphism.

Corollary 6.2. Define the rejection of X by A as $Q_A(X) = Q(X) = X - P_A(X)$. Then

Corollary 6.3. Define the projection **along** A, \mathcal{P}^A , as the extension of $Q_A(x)$ by outermorphism. Then \mathcal{P}^A is grade preserving, and

 $\begin{aligned} 1. \ \mathcal{P}^{A}(X) &= \mathcal{P}(X) = A^{-1} \rfloor (A \land X) = A^{-1}(A \land X) = (X \land A) A^{-1} = (X \land A) \lfloor A^{-1} \subseteq A^{\perp} \\ 2. \ X \subseteq A^{\perp} \Rightarrow \mathcal{P}(X) = X, \quad \mathcal{P}(X) \subseteq A^{\perp}, \quad \mathcal{P}^{2}(X) = \mathcal{P}(X), \quad \mathcal{P}(A^{\parallel}) = \{0\}, \ and \quad P_{A} \circ \mathcal{P}^{A} = \mathcal{P}^{A} \circ P_{A} = 0 \\ 3. \ Symmetry \ X \cdot \mathcal{P}(Z) = \mathcal{P}(X) \cdot Z \end{aligned}$

Theorem 6.4 Projection P_A^B on A along B (with $(A \land B)^{\perp}$ fixed). Assume \mathbb{K} is a field not of characteristic 2. For a r-blade A and a s-blade B let $C = A \land B$ and assume C is invertible and set $\eta = (B \land A) \cdot C$. Then $C^{-1} = (-1)^{r_s} \eta^{-1} C$ and 1. $V = V_A \oplus V_B \oplus V_{\perp C}$ as direct sum of vectorspaces, and this defines projections. P_A^B is the projection on $V_A \oplus V_{\perp C}$ along V_B . 2. P_A^B extended by outermorphism gives $P_A^B(X) = \eta^{-1}(A \sqcup C) \rfloor (B \land X)$ 3. $X \subseteq \Lambda(V_A + V_{\perp C}) \Rightarrow P(X) = X$, $X \subseteq B \Rightarrow P(X) = 0$, $P(X) \subseteq \Lambda(V_A + V_{\perp C})$, $P^2(X) = P(X)$, $P_A^B \circ P_B^A = P_B^A \circ P_A^B = \mathcal{P}^C$, $P_B^A + P_B^A - \mathcal{P}^C = \operatorname{id}_{\Lambda(V)}$

Theorem 6.5. For a h-blade A assume $\rho = A \cdot A$ is invertible, such that $A^{-1} = \rho^{-1} A$. Define the reflection **along** A by linearity and

 $\mathcal{R}^{A}(X) = \mathcal{R}(X) = (-1)^{hr} A X A^{-1}$, when grade(X) = r. Then

- 1. $\mathcal{R}^{4}(x) = \hat{A} x A^{-1}$ $\mathcal{R}(x) = x - 2 P(x)$ $\mathcal{R}(P(x)) = -P(x)$ and $\mathcal{R}(Q(x)) = Q(x)$ justify the words "along A".
- 2. Also $\mathcal{R}^2(X) = X$, and $\mathcal{R}(X) \cdot \mathcal{R}(Y) = X \cdot Y$.
- 3. Moreover \mathbb{R}^A is a Clifford algebra isomorphism and universal extension of its restriction to V. \mathbb{R} is e.g. grade preserving and an outermorphism, as the Automorphism Theorem 5.4 apply to \mathbb{R} .

4. Also $\mathcal{R}(P(X)) = P(\hat{X})$, $\mathcal{R}(\mathcal{P}^A(X)) = \mathcal{P}^A(X)$, \mathcal{R} is symmetric, $\mathcal{R}(X) \cdot Y = X \cdot \mathcal{R}(Y)$

5. If V has a finite basis, then $det(\mathcal{R}^A) = (-1)^h$

Corollary 6.6. Define the reflection in A as $R_A(X) = R(X) = \mathcal{R}^A(\hat{X})$. Then $I = R_A(X) = (-1)^{hr} A \hat{X} A^{-1}$ and if $x \in V$ then

$$R_A(x) = -R^A(x) = -\hat{A} x A^{-1}$$

$$R(x) = -x + 2 P(x)$$

$$R(P(x)) = P(x) \text{ and } R(Q(x)) = -Q(x) \text{ supports the words "in A".}$$

- 2. Also $R^2(X) = X$, and $R(X) \cdot R(Y) = X \cdot Y$.
- 3. Moreover R_A is a Clifford algebra isomorphism and universal extension of its restriction to V. R is e.g. grade preserving and an outermorphism, as the Automorphism Theorem 5.4 apply to R.
- 4. R(P(X)) = P(X), $\mathcal{R}(\mathcal{P}^A(X)) = \mathcal{P}^A(\hat{X})$, $R^2(X) = X$, R is symmetric, $R(X) \cdot Y = X \cdot R(Y)$
- 5. If *V* has a finite basis, then $det(R_A) = (-1)^{h+|M|}$

Definition 6.7 A versor of order h or a h-versor, $U = u_1 \dots u_h$, as a product of invertible elements $u_i \in V$. 1. As $U^{-1} = u_h^{-1} \dots u_1^{-1}$ a versor transformation of $C\ell(B, V)$ is defined by linearity and

- $S(X) = S_U(X) = (-1)^{hr} U X U^{-1}$, when grade(X) = r, e.g. $S(x) = \hat{U} x U^{-1}$
- 1. As $S_U = \mathcal{R}^{u_1} \circ ... \circ \mathcal{R}^{u_h}$ the Automorphism Theorem apply to S_U , and, if V has a finite basis, then $\det(S_U) = (-1)^h$ 2. The Clifford group Γ is the multiplicative group of versors.
- *Define* Γ^+ , *the rotation versors, as the versors of even order, which obviously is a subgroup of* Γ *of index 2. The orthogonal isomorphisms* $V \to V$ *is a group under composition* \circ *, the orthogonal group O(B). The mapping* $\Psi : U \to S_U$ *is a multiplicative morphism from* Γ *into the orthogonal group O(B).*

Lemma 6.8. The mapping $\Psi: U \to S_U$ is a multiplicative morphism from Γ into the orthogonal group O(B).

Theorem 6.9. Assume K is a field not of characteristic 2, V has a finite basis and B is regular. 1. Then from the Cartan-Dieudonne theorem follows that any orthogonal isomorphism of V can be expressed as $S(x) = \hat{U} x U^{-1}$, where U is a h-versor with $h \le n = \dim(V)$. 2. $\forall_{x \in V} \ \hat{U} x U^{-1} = \hat{T} x T^{-1}$ imply $T \in \mathbb{K}^{\times} U$.

3. $\Psi: \Gamma \to O(B)$ is onto O(B) with kernel $\Psi^{-1}(\mathrm{id}_V) = \mathbb{K}^{\times}$

Also Ψ maps Γ^+ onto $O^+(B)$, the orthogonal isomorphisms with determinant 1 called rotations. 4. Moreover, if $\forall_{x \in V} \psi(x) = \hat{T} x T^{-1} \in V$, then T is a versor.

Corollary 6.10. The mapping $\Phi: U \to U \ \tilde{U} \in \mathbb{K}^{\times}$ is a multiplicative morphism, $\Phi(\Gamma)$ is a multiplicative group, and $\Phi(\Gamma) = \Phi(\Gamma) \mathbb{K}^{\times 2}$.

2. Assume $\mathbb{K}^{\times} = S \times (\mathbb{K}^{\times})^2$ as direct product of multiplicative subgroups S and $(\mathbb{K}^{\times})^2$, like e.g. $\mathbb{R}^{\times} = \{\pm 1\} \times (\mathbb{R}^{\times})^2$ or $\mathbb{C}^{\times} = \{1\} \times (\mathbb{C}^{\times})^2$.

Then each $U \in \Gamma$ can be normalized as t U, such that $\Phi(t U) \in S$, and t is unique apart from a factor ± 1 . Define $pin(B) = \Phi^{-1}(S)$ and $pin(B) = pin(B) \cap \Gamma^+$, $pin^+(B) = \Phi^{-1}(1)$ and $pin^+(B) = pin^+(B) \cap \Gamma^+$. If $U \in pin(B)$, then $S_U(x) = s^{-1} \hat{U} x \hat{U}$, where $s = \Phi(U) \in S$

Chapter 7 Finer structures in Clifford algebra

Theorem 7.1. Let (a_i) be an orthogonal basis for V, $V_{\kappa} = V \oplus \mathbb{K} a_{\kappa}$, a_{κ} orthogonal to V, $a_{\kappa}^2 = \varepsilon$ invertible, and B_{κ} the extension of B to V_{κ} . Define a linear mapping $f: V \to C\ell(B_{\kappa})^+$ by $u \to u a_{\kappa}$. Then f extends uniquely to an algebra isomorphism $F: C\ell(-\varepsilon B) \to C\ell(B_{\kappa})^+$.

Definition 7.2. An algebra A is called simple, if A has no twosided ideals other than 0 and A. The center Z = Z(A) of an algebra A consists of the elements commuting with all the elements of A.

Theorem 7.3. Assume K is a field of characteristic $\neq 2$. Then, if |M| is finite and odd, then $Z = Z(C\ell(B)) = K e_M + G(V_0)^+$, and otherwise $Z = G(V_0)^+$, where V_0 is the radical or kernel of B.

Lemma 7.4. For algebra A and $f \in A$ assume $f^2 = f$. Then 1. $(1-f)^2 = (1-f)$ and f(1-f) = 0. 2. $I_{-} = A f$ is a left ideal. 3. $P_-: X \to X f$ is an algebraic projection onto I_- , such that $P_-^2 = P_-$, $(1 - P_-)^2 = (1 - P_-)$ and $P_-(1 - P_-) = 0$ with $1 = id_V$. Moreover $X \in \mathcal{I}_{-} \Rightarrow P_{-}(X) = X$ 4. If $f \in Z(A)$, then I_{-} is as a twosided ideal, and $P_{-}: A \to I_{-}$ is an algebra homomorphism. As (1-f) has the same properties as those mentioned of f, it give likewise rise to objects $I_{+} = 1 - I_{+}$ and $P_{+} = 1 - P_{-}$. Analogous statements to (1-3) holds and furthermore 5. $\mathcal{I}_{-} \oplus \mathcal{I}_{+} = A$ Theorem 7.5. Assume \mathbb{K} is a field of characteristic $\neq 2$ and B is regular. Then 1. If |M| is even or infinite, then $C\ell_V(B)$ is simple. 2. Assume |M| finite and odd. Then *I* is a non-trivial ideal $\Leftrightarrow \exists_{\lambda} : I = C\ell(B) (1 + \lambda e_M) \text{ and } \lambda^2 e_M^2 = 1.$ 3. Assume |M| finite and odd, and $\lambda^2 e_M^2 = 1$. Then (3a) $f_{\pm} = (1 \pm \lambda e_M)/2 \in Z(C\ell(B)), f_{\pm}f_{\pm} = 0 \text{ and } f_{\pm}^2 = f_{\pm}.$ This gives projections and algebra homomorphisms $P_{\pm}(X) = X f_{\pm}$ onto proper ideals $I_{\pm} = P_{\pm}(C\ell(B))$, such that $P_{-} + P_{+} = \mathrm{Id}_{C\ell(B)}, \quad P_{-} P_{+} = 0, \ P_{\pm}^{2} = P_{\pm}, \ and \ I_{-} \oplus I_{+} = C\ell(B).$ (3b) $P_+(X) \cdot Y = X \cdot P_+(Y)$ (3d) $C\ell(B)^+$ isomorphic to each ideals I_{\pm} by the restriction of P_{\pm} to $C\ell(B)^+$. (3e) $C\ell(B)^+$ and I_{\pm} are all simple.

(3f) The only non-trivial ideal in $C\ell_V(B)$ are I_- and I_+ .

Theorem 7.6. Assume B is regular and \mathbb{K} is a field of characteristic $\neq 2$, that |M| is finite >1 and odd, and also that $\lambda \in \mathbb{K}$ can be found, such that $\lambda^2 e_M^2 = 1$. Then

1. In $\mathcal{A}(V, B)$ exists besides $C\ell_V(B)$ only the algebras $U_{\pm} = C\ell(B)/\mathcal{I}_{\pm}$.

2. If $\tilde{e_M} = e_M$, then $C\ell(B)/I_{\pm}$ has reversion and no conjugation.

Otherwise, if $\overline{e_M} = e_M$, then $C\ell(B)/I_{\pm}$ has conjugation and no reversion.

Lemma 7.7. Let $x_i \in V$, then $x_1 x_2 \dots x_p - x_1 \wedge x_2 \wedge \dots \wedge x_p \in \Lambda_{\leq p}(V)$.

Theorem 7.8. Let $(x_i | i \in I)$ be linear independent in V. 1. Then $(x_K | K \subseteq I, K \text{ finite})$ is linear independent. 2. Assume $(x_i | i \in I)$ is a basis for V, and $K \subseteq I, K$ finite. Then the quantization transformation $f : \mathcal{G}(V) \to \mathcal{G}(V)$ is well-defined by linearity and $f(x_{\wedge K}) = x_K$. Moreover (x_K) is a basis for $\mathcal{G}(V)$.

Definition 7.9. In $C\ell(B)$ define parity of X by $par(X) = p \Leftrightarrow grade(X) \equiv p \pmod{2}$. Also set $C\ell(B)^- = \{X \mid par(X) = 1\}$ and $C\ell(B)^+ = \{X \mid par(X) = 0\}$ Parity makes $C\ell(B)$ a graded algebra: par(X) = r and $par(Y) = s \Rightarrow par(X|Y) = r + s \mod{2}$. Definition 7.10. To every Clifford algebra $C\ell(B, V)$ is associated a twisted algebra $C\ell(B, V)^{tw}$ in the same linear space with multiplication defined by linearity and $X^{\tau}Y = (-1)^{rs}XY$, when par(X) = r and par(Y) = s1. This gives an algebra structure, such that $x^{\tau}x = -x^2$ for $x \in V$. The twisted of the twisted algebra is the original. 2. The universal extension of id_V is an algebra isomorphism $F : C\ell(-B, V) \to C\ell(B, V)^{tw}$.

Chapter 8 Chevalley's construction of Clifford algebras from tensor algebras

Theorem 8.1. Let $\mathcal{T} = \mathcal{T}(V, \otimes)$ be the tensor algebra over V. For any algebra A over \mathbb{K} and any linear mapping $\tau: V \to A$, there is a unique algebra morphism $T: \mathcal{T} \to A$ that extends τ .

Definition 8.2. Let I = I(V, B) be the two-sided ideal in $\mathcal{T} = \mathcal{T}(V)$ generated by $S = \{x \otimes x - B(x, x) \mid x \in V\}$. The Clifford algebra $CC\ell_V(B)$ is then defined as the quotient algebra $CC\ell = \mathcal{T}/I$ together with $\hat{\pi} : \mathcal{T} \to CC\ell$ the canonical algebra morphism.

Definition 8.3. Let $\mathcal{K}(V, B)$ be the category of linear mappings f from V into an algebra A, such that $f(x)^2 = B(x, x) \mathbf{1}_A$.

A mapping $\omega: V \to U$ in $\mathcal{K}(V, B)$ is said to be universal, if for every linear mapping $f: V \to A$ in $\mathcal{K}(V, B)$, there is a unique algebra morphism $F: U \to A$ such that $F \circ \omega = f$. (i.e. $f: V \xrightarrow{\omega} U \xrightarrow{F} A$)

Theorem 8.4.

1. $\pi = \hat{\pi}|_V$ from definition 8.2 is a universal object in $\mathcal{K}(V, B)$.

2. Assume B is symmetric.

Then $\pi: V \to CC\ell$ is injective and has an extension $G: C\ell_V(B) \to CC\ell$ to an algebra isomorphism, and therefore $G(1_{C\ell_V(B)}) = 1_{CC\ell}$.

Therefore a Cliford algebra in the version presented in definition 1.1 is also a Chevalley Cliford algebra.