
Geometric Algebra formula collection v.2.0

Chapter 1  Definition of a Clifford algebra

Definition 1.1. A Clifford algebra U over B, is an algebra containing V, such that 

1.  ∀x∈V : x2 = B(x, x) 1U

2.  V  generates U

3.  V ⋂  1U = {0}.

Let (V , B) be the category of  Clifford algebras over B.

U is called (initial-) universal in (V , B), if

4.  Any linear mapping f : V → A into an algebra A, such that f (x)2 = B(x, x) 1A, has a unique exacortzen@gmail.-

comfacortzen@gmail.comtension to algebra morphism F : U → A. This extension is called the universal extension.

Theorem 1.2. Assume algebras Ui are universal in (Vi, Bi), f : V1 → V2 is  -linear and f : V1 → V2 is  -linear.

Then f has a unique extension, F : U1 → U2 to an algebra morphism, which is an isomorphism, if f is bijective. 

Corollary 1.3. An universal algebra in (V , B) is uniquely determined aside from isomorphisms fixing V.

Corollary 1.4. Assume algebras Ui are universal in (Vi, Bi) and fi : Vi → Vi+1 is  -linear.

Let Fi : Ui → Ui+1 be the unique extensions to algebra morphisms.

Then the unique extension of fk ∘…∘ f1  to an algebra morphism is  Fk ∘…∘ F1.

Chapter 2  Construction of a universal Clifford algebra

Definition 2.1. Let for sets H , J ∈ ℱ  

                  α(H , J) =Π (-1) for (h, j) ∈ H ⨯J and h > j   

                  β(H , J) =Π q(ei) for i ∈ H ⋂ J , 

                  σ = α β 

Theorem 2.2. Define a product (X , Y)→ X Y in W by eH eJ =σ(H , J) eH △J and bilinearity.  

Then W becomes a Clifford algebra in (V , B).

Lemma 2.3.     σ(H , J)σ(H △ J, K) =σ(H , J △ K)σ(J, K), 

Corollary 2.4. eI =Π I ei.

Theorem  2.5. 1. W is universal in (V , B).

Hence W is uniquely determined by universality in (V , B) aside from isomorphism.

W is denoted ℓ(B, V ) or ℓ(B). 

2. If (ai i ∈ M ′) be an orthogonal basis for V, then (aK K ⊆ M ′, K finite) is a basis for ℓ(B, V ).

3. The Clifford product is independent of selection of orthogonal basis, if the product is constructed in ℓ(B, V ). 

Definition 2.6. Let  p,q,r be a real vector space of dimension n = p + q + r with a symmetric bilinearform B that in

diagonal form has (p, q, r) times (1, -1, 0) ' s respectively in that order. To this correspond a Clifford algebra

p,q,r. If r = 0,  r can be omitted.
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The complex case ℂp,r is defined likewise, but without q and -1.

Chapter 3  The Grassmann algebra over V

Theorem 3.1. In Λ(V ) define the submodule of elements of grade r ∈ ℤ by

 Λr(V ) = span {⋀i=1
r ai ai ∈ V } for r ≥ 0 and otherwise Λr(V ) = {0}. 

This makes Λ(V ) a graded algebra, as obviously Λr(V )⋀Λs(V ) ⊆ Λr+s(V ).

Also define x → 〈x〉r, as the projection on Λr(V ) along ⊕i≠r Λi(V ), and 〈x〉 = 〈x〉0.

Set Λ<p(V ) =⊕i<p Λi(V ), and also x → 〈x〉R =⊕r∈R 〈x〉r , where R is a subset of ℤ.

Then

1.  Λ(V ) =⊕r Λr(V ) and Λr(V )⋀Λs(V ) = Λr+s(V ).

     If M  is finite, then rank(ΛM(V )) = 1 and Λr(V ) = 0 for r > M  

2.  x⋀x = 0 and x1 ⋀x2 = -x2 ⋀x1

3.  x1 ⋀x2 ⋀… ⋀xp  is multilinear and alternating in the x-variables

Theorem  3.2.  (Extension  by  outermorphism).  A  -linear  mapping  f : V1 → V2  has  a  unique  exten-

sion,f⋀ : Λ(V1)→ Λ(V2) to an algebra morphism, which is grade preserving. Moreover f⋀ is bijective, if f is.

Proof: As f (x)⋀ f (x) = 0 , the assertion follows from universal extension, which is grade preserving, as an algebra

morphism.

Theorem 3.3 (The Invariant basis property). Two bases for V have the same finite size or are both infinite. 

Theorem 3.4. Assume  M is finite. Then with respect to any basis

1.   M  = rank(V )  and   M  = max {r Λr(V ) ≠ 0} 

2.  ΛM(V ) = eM 

3.  rank(Λr(V )) = 
M

r


4.  rank(Λ(V )) = 2M and rank(Λ(V )+) = rank(Λ(V )-) = 2M-1

Theorem 3.5.  From ℓ(B, V )  any non isomorphic  Clifford algebra A in  (V , B)  can be found as  a  quotient

ℓ(B, V ) /ℐ with ideal ℐ ≠ {0}.

If M is finite, then              A in (V , B) is non-universal ⇔ rank(A) = 2k and k < M .

Definition 3.6. The geometric algebra (B, V ) or (V ) is the double algebra of ℓ(B, V ) and Λ(V ) in the same

space.

For xi ∈ V set xI =Πi∈I,↑ xi  and x⋀I =⋀i∈I,↑ xi. By construction  e⋀I = eI. 

Chapter 4  Morphisms

Definition 4.1.  To every algebra A is in the same linear space associated an opposite algebra Aο with multiplica-

tion  X ο Y = Y X . 

The linear identity A → Aοis an anti-automorphism, and is also denoted ο : A → Aο. Moreover Aοο = A and ο2 = idA.

That this multiplication makes Aο an algebra is easily verified, and also that Aοο = A and ο2 = idA. 

Theorem 4.2.  For any algebra A over   and any linear mapping f : V → A such that f (x)2 = B(x, x) 1A,  there
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exists  a  unique  algebra  anti-morphism  Fο : ℓ(B, V )→ A,  which  extends  f.  This  extension  is  also  called  the

universal anti-extension.

Corollary 4.3. Assume algebras Ui belongs to (Vi, Bi) and fi : Vi → Vi+1 is  -linear.

Then fi  has a unique extension, Ui → Ui+1  to an algebra anti-morphism, which is an anti-isomorphism, if fi  is

bijective. 

Let Fi : Ui → Ui+1be a morphism or an  anti-morphism and F = Fk ∘…∘ F1. If the number of anti-morphism in the

composition is odd, then F is anti-morphism, and otherwise a morphism.

Definition 4.4. Let U be a Clifford algebra in  (V , B), not necessarily universal.

As proved a linear mapping f : V → V has at most one extension to an automorphism or anti-automorphism of U.

If  they exists,

      the main or grade automorphism X → X

 is the extension of f : V → V, f (x) = -x to an automorphism of U.

      the reversion X → X

 is the extension of f : V → V, f (x) = x to an anti-automorphism of U. 

      the Clifford conjugation X → X  is the extension of f : V → V, f (x) = -x to an anti-automorphism of U.

Theorem 4.5. ℓV (B) is extended to a geometric algebra to make the grade concept available.

1. In ℓV (B) the main automorphism, the reversion, and the Clifford conjugation exists.

2. For the main automorphism holds   grade (X ) = r ⇒ X

= (-1)r X

3.  For  the  reversion   holds    (X Y)~ = Y


X

,  (a1 a2 … ar)

~ = ar … a2 a1  for  ai ∈ V  and

grade (X ) = r ⇒ X

= (-1)r(r-1)/2 X

4. For the Clifford conjugation holds  X =X
 ~

 and  grade (X ) = r ⇒ X = (-1)r(r+1)/2 X

5. These three mappings are grade preserving, involutions, commuting and independent of the B. Each one is the

composition of the two others.

Chapter 5  Basic structure of Geometric algebra 

Definition 5.1. Set χS = 1, if the proposition  S is true, and else zero. Define in (B, V ) compositions · ,⌋ and ⌊ by

bilinearity by

eH ·eJ = χH=J eH eJ, the scalar product,

eH ⌋ eJ = χH⊆J eH eJ,  the left contraction,

eH ⌊eJ = χH⊇J eH eJ,  the right contraction.

We already know from the product definition based on the α and β functions that

eH ⋀eJ = χH⋂J=∅ eH eJ

Theorem 5.2. In a geometric algebra (B, V ) holds 

1.   x X = x⌋ X + x⋀X   and    X x =X ⋀x +X ⌊x 

      x ·y = B(x, y) 1,

2.   If grade(X ) = r and  grade(Y) = s, then

      X ·Y = 〈X Y〉 = 〈Y X〉 = Y ·X  ,    X⌋ Y = 〈X Y〉s-r ,   X ⌊Y = 〈X Y〉r-s   and   X ⋀Y = 〈X Y〉r+s

      The three main involutions are symmetric, X

·Y =X ·Y


,    X


·Y =X ·Y


,     X ·Y =X ·Y

3.   If grade(X ) = r and  grade(Y) = s, then

      r ≠ s ⇒ X ·Y = 0,     Y X = X


⌋ Y


~
= (-1)(s+1) r X Y   and X Y = Σi=r-s step 2

r+s 〈X Y〉i

4.   (X ⋀Y )⌋ Z =X⌋ (Y ⌋ Z)   and   (X ⋀Y ) ·Z =X · (Y ⌋ Z) 

5.   x ⌋ (X Y) = (x ⌋ X ) Y +X

(x ⌋ Y      
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      x ⋀ (X Y) = (x ⌋ X ) Y +X

(x ⋀Y)    

      x ⋀ (X Y) = (x⋀X ) Y -X

(x  Y    

      x ⌋ (X Y) = (x ⋀X ) Y -X

(x ⋀Y)  

6.   x ⌋ (X ⋀Y) = (x ⌋ X )⋀Y +X

⋀ (x ⌋ Y

      x ⋀ (X⌋ Y) = (x ⌋ X )⌋ Y +X

 (x ⋀Y)  

7.   x⌋ (x1 x2 … xp) =∑k=1
p (-1)k-1 x1 x2 …(x⌋ xk… xp

8.   x⌋ (x1 ⋀x2 ⋀… ⋀xp) =∑k=1
p (-1)k-1 x1 ⋀x2 …⋀ (x⌋ xk… ⋀xp 

9.   x1, x2, … , xp are pairwise  orthogonal ⇒ Πi=1
p xi =⋀i=1

p xi

10.  x X -X


x = 2 x X and x X +X


x = 2 x⋀X

11.  ∀x∈V (x⋀A = 0)⇔ (A ∈  eM, if M  is finite, and otherwise A = 0).  

      Assume  is a field or the weaker condition μ ei
2 = 0 ⇒ μ = 0 or ei

2 = 0 for i ∈ M, μ ∈  . Then

      ∀x∈V ( x⌋ A = 0)⇔ A ∈ (V0),  where V0 is the radical or kernel of B.  (NB: Always  ⊆(V0))

12. (x1 ⋀x2  ⋀xr) · (yr ⋀ ⋀y2 ⋀y1) = Σσ sσ (x1 ·yσ(1)) …(xr ·yσ(r)) 

      where summation is over all permutations σ of {1, …, r}.

13. Factor expansion of x⋀K:    Let X = x⋀K and B ∈ Λs(V ).  If  τH = α(H , K\H) (B · x⋀H) ∈  *), then 

                          B⌋ X = ΣH⊆K, H=s τH x⋀K\H

*) α is from definition 2.1:  α(H , J) =Π (-1) for (h, j) ∈ H ⨯J and h > j  

Determinant Theorem 5.3.  Let f : V → Vbe  linear mapping.

1. If V has a finite basis, then the determinant det(f ) is defined by F(eM) = det(f ) eM independent of basis. 

2. Moreover (f ∘g)⋀ = f⋀ ∘g⋀, det(f ∘g) = det(g) det(f ), and detf -1 det(f ) = 1 when f is bijective.  

3. Assume m = M ,  M = {1, …, m}  and  f (as) = Σi θs
i ai in some basis (ai i ∈ M). Then

 det(f ) = Σσ sign(σ)  θ
σ(1)
1 … θσ(m)

m , where summation is over all permutations σ of M.

Automorphism Theorem 5.4. Let f : V → Vbe  linear mapping, such that f (x)2 = B(x, x) 1A. Then f has two univer-

sal extensions:

To an outermorphism f⋀ : Λ(V )→ Λ(V ), and to Clifford algebra isomorphism  F : ℓV (B)→ ℓV (B).

Assume B(f (x), f (y)) = B(x, y), or  is a field not of characteristic 2.  Then f⋀ is called the universal extension of f

to (B, V ), as

F = f⋀, and thus is an outermorphism, and furthermore grade preserving, an orthogonal isomorphy, an isomorphy

for ⌋ and ⌊, and commutes with the three main involutions.

Anti-automorphism Theorem 5.5. Let f : V → Vbe  linear mapping, such that f (x)2 = B(x, x) 1A. Then f has two

universal anti-extensions:

To an anti-outermorphism f⋀
τ : Λ(V )→ Λ(V ), and to Clifford algebra anti-isomorphism  Fτ : ℓV (B)→ ℓV (B).

Assume B(f (x), f (y)) = B(x, y), or  is a field not of characteristic 2. Then f⋀
τ is called the universal anti-extension

of f  to (B, V ), as

1. Fτ = f⋀
τ, and thus is an anti-outermorphism, grade preserving, an orthogonal isomorphism and commutes with

the three main involutions. Furthermore Fτ(X⌋ Y) = Fτ(Y) ⌊Fτ(X ) and Fτ(Y ⌊X ) = Fτ(X )⌋ Fτ(Y).

2. If V has a finite basis, then Fτ(eM) = (-1)M (M-1)/2 det(f ) eM.

Theorem 5.6. Assume B is regular and   is a field of characteristic≠2. Then

     A is universal in (V , B)  ⇔  A has a main automorphism 

ALLAN CORTZEN

4



 automorphism

Definition 5.7. A list of elements in a module is linear independent, if the only (finite) linear combination of the

elements giving zero is that with zero factors. Linear dependent means not linear independent.

Obviously holds: A list of elements is linear independent ⇔ every finite sublist is linear independent 

Theorem 5.8. Let H be finite. Then

  A: (xh h ∈ H) is linear independent  ⇔  B: x⋀H is linear independent  ⇔  C: (x⋀K K ⊆ H) is linear independent 

Corollary 5.9.  S = (x1, x2 … , xp) is linear independent   ⇔   S⋀ = x1 ⋀x2 ⋀… ⋀xp is linear independent 

Corollary 5.10.  Allow H0 ⊆ M to be infinite. Then

  (xh h ∈ H0) is linear independent  ⇔   (x⋀K K ⊆ H0, K finite) is linear independent 

Definition 5.10. If U  is a submodule of V, then set Λ(U) = span {⋀i=0
m U m ∈ ℕ}, which obviously is the Grassmann-

algebra generated by U. 

Also set Λ>0(U) = span {⋀i=1
m U m ∈ ℕ}. 

  

Theorem 5.11. Let A = a⋀H be a blade.

Define modules VA = {x ∈ V x⋀A = 0 }, VA⊥ = {x ∈ V ∀h∈H x ·ah = 0 } and set A∥ =Λ(VA), A
⊥ =Λ>0(VA⊥).

Obviously span {ah h ∈ H} ⊆ VA  implying  Λ({span {ah h ∈ H}) ⊆ A∥. Moreover also V1 = {0} and V1⊥ =V  and

1∥ = {0}, 1⊥ =Λ>0(V ).

Omitting ∥ like in X ⊆ A instead of X ⊆ A∥ can be used, if it is clear that A means an algebra and not a blade.

Inclusions like X ⊆ A∥ or X ⊆ A⊥ may be used for elements, as in  e1 ⊆ A∥ meaning {e1} ⊆ A∥ 

Then

1.  X ∈ span {a⋀H1, … , a⋀Hk
∀h∈H Hh ⊆ H}⇒ X ⊆ A∥

       NB: The opposite inclusion is true, if V is a vectorspace; but not generally for modules.

2.  B ⌋ A ⊆ A∥

3.  C⌋ A = C A, when C ⊆ A∥

4.  A2 = A⌋ A = A ·A    and   A is invertible ⇔ A ·A invertible ⇒  A-1 = A / (A ·A)

5.  Assume A is invertible. Then span {ah h ∈ H} =VA.

NB: In Corollary 6.2.5 is proved:  A invertible ⇒ V =VA ⊕VA⊥ 

 

Lemma 5.12. Let A be a blade. Then

1.  If C ⊆ A∥:   

    (C⌋ B) A = C⋀ (B A)     

    (C⌋ B)⌋ A = C⋀ (B⌋ A)   

    (C ⋀B) A = C (B A)

    (C B)⌋ A = C (B⌋ A)  

2 . If C ⊆  + A⊥:

    (C⌋ B) A = C⌋ (B A)   

    (C⌋ B)⋀A = C⌋ (B ⋀A) 

    (C⋀B) A = C⋀ (B A)

    (C B )⋀A = C (B ⋀A)

Chapter 6  Geometric transformations
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Theorem 6.1. For a h-blade A assume ρ = A ·A is invertible, thus A-1 = ρ-1 A.

Define the projection on A as PA(X ) = P(X ) = (X⌋ A)⌋ A-1. 

1. Then P is grade preserving,

2. P(X ) = (X⌋ A) A-1,   P(X ) = ρ-1 A (A ⌊X ) = ρ-1 A ⌊ (A ⌊X )        

3. X ⊆ A ⇒ P(X ) =X ,  P(X ) ⊆ A ,  P2(X ) = P(X )

4. P(Λ(V )) = A∥ , P(V ) =VA  ,  P(A⊥) = {0}.

5. P is symmetric, X ·P(Y) = P(X ) ·Y  

6. Moreover P is an outermorphism.

Corollary 6.2. Define the rejection of X by A as  QA(X ) = Q(X ) =X - PA(X ). Then 

Corollary 6.3. Define the projection along A, A,  as the extension of  QA(x) by outermorphism. Then A is grade

preserving, and

1. A(X ) =(X ) = A-1⌋ (A⋀X ) = A-1(A⋀X ) = (X ⋀A) A-1 = (X ⋀A) ⌊A-1 ⊆ A⊥

2. X ⊆ A⊥ ⇒ (X ) =X ,   (X ) ⊆ A⊥,  2(X ) =(X ),   (A∥) = {0}, and  PA ∘A =A ∘PA = 0 

3. Symmetry X ·(Z) =(X ) ·Z  

Theorem 6.4 Projection PA
B on A along B (with (A⋀B)⊥ fixed). Assume  is a field not of characteristic 2. 

For  a  r-blade  A  and  a  s-blade  B  let  C = A⋀B  and  assume  C  is  invertible  and  set  η = (B⋀A) ·C.  Then

C-1 = (-1)r s η-1 C and           

1. V =VA ⊕VB ⊕V⊥C as direct sum of vectorspaces, and this defines projections. PA
B is the projection on VA ⊕V⊥C

along VB. 

2. PA
B  extended by outermorphism gives  PA

B(X ) = η-1(A⌋ C (B⋀X )

3.  X ⊆ Λ(VA +V⊥C)⇒ P(X ) =X,  X ⊆ B ⇒ P(X ) = 0,  P(X ) ⊆ Λ(VA +V⊥C),  P2(X ) = P(X ),  PA
B ∘PB

A = PB
A ∘PA

B =C,

PB
A + PA

B -C = idΛ(V ) 

Theorem 6.5. For a h-blade A assume ρ = A ·A is invertible, such that A-1 = ρ-1 A.

Define the reflection along A by linearity and

                  ℛA(X ) =ℛ(X ) = (-1)h r A X A-1,  when grade(X ) = r.  Then

1. ℛA(x) = A


x A-1

    ℛ(x) = x - 2 P(x)

    ℛ(P(x)) = -P(x)  and  ℛ(Q(x)) = Q(x)  justify the words “along A”.

2. Also  ℛ2(X ) =X , and ℛ(X ) ·ℛ(Y) =X ·Y.

3. Moreover ℛA is a Clifford algebra isomorphism and universal extension of its restriction to V.

    ℛ is e.g. grade preserving and an outermorphism, as the Automorphism Theorem 5.4 apply to ℛ.

4. Also ℛ(P(X )) = P(X

) , ℛA(X ) =A(X ) ,   ℛ is symmetric, ℛ(X ) ·Y =X ·ℛ(Y)   

5. If V has a finite basis, then  detℛA = (-1)h   

Corollary 6.6. Define the reflection in A  as   RA(X ) = R(X ) =ℛA(X

).   Then

1. RA(X ) = (-1)h r A X


A-1  and, if x ∈ V, then 

    RA(x) = -ℛA(x) = -A


x A-1

    R(x) = -x + 2 P(x)

    R(P(x)) = P(x)  and  R(Q(x)) = -Q(x) supports the words “in A”.
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Q Q  supports

2. Also R2(X ) =X , and R(X ) ·R(Y) =X ·Y.

3. Moreover RA is a Clifford algebra isomorphism and universal extension of its restriction to V.

    R is e.g. grade preserving and an outermorphism, as the Automorphism Theorem 5.4 apply to R.

4. R(P(X )) = P(X ) ,   ℛA(X ) =A(X

),  R2(X ) =X  ,  R is symmetric, R(X ) ·Y =X ·R(Y)   

5. If V has a finite basis, then  det(RA) = (-1)h+M  

Definition 6.7 A versor of order h or a h-versor,  U = u1 … uh , as a product of invertible elements ui ∈ V .

1. As U-1 = uh
-1 … u1

-1 a versor transformation of ℓ(B, V ) is defined by linearity and

      S(X ) = SU(X ) = (-1)h r U X U-1 ,when  grade(X ) = r, e.g.   S(x) =U


x U-1 

1.  As SU =ℛu1 ∘…∘ℛuh the Automorphism Theorem apply to SU, and, if  V has a finite basis, then det(SU) = (-1)h 

2. The Clifford group Γ is the multiplicative group of versors. 

    Define Γ+, the rotation versors, as the versors of even order, which obviously is a subgroup of Γ of index 2.

    The orthogonal isomorphisms V → V is a group under composition ∘ , the orthogonal group O(B).

    The mapping Ψ : U → SU is a multiplicative morphism from Γ into the orthogonal group O(B).

Lemma 6.8. The mapping Ψ : U → SU is a multiplicative morphism from Γ into the orthogonal group O(B).

Theorem 6.9.  Assume  is a field not of characteristic 2, V has a finite basis and B is regular. 

1. Then from the Cartan-Dieudonne theorem follows that any orthogonal isomorphism of V can be expressed as

S(x) =U


x U-1, where U is a h-versor with h ≤ n = dim(V ). 

2. ∀x∈V U


x U-1 = T


x T-1  imply T ∈ ⨯ U.

3.  Ψ : Γ → O(B) is onto O(B) with kernel  Ψ-1(idV ) =⨯ 

    Also Ψ maps Γ+ onto O+(B), the orthogonal isomorphisms with determinant 1 called rotations.  

4. Moreover, if  ∀x∈V ψ(x) = T


x T-1 ∈ V, then T is a versor.

Corollary 6.10. The mapping Φ : U → U U


∈ ⨯ is a multiplicative morphism, Φ(Γ) is a multiplicative group, and

Φ(Γ) = Φ(Γ)⨯ 2.

2. Assume ⨯ = S×(⨯) 2 as direct product of multiplicative subgroups S and (⨯) 2, like e.g.  ⨯ = {±1}×(⨯) 2 or

ℂ⨯ = {1}×(ℂ⨯) 2. 

Then each U ∈ Γ can be normalized as t U, such that Φ(t U) ∈ S, and t is unique apart from a factor ±1. 

Define  pin(B) = Φ-1(S) and spin(B) = pin(B)⋂ Γ+,   pin+(B) = Φ-1(1) and spin+(B) = pin+(B)⋂ Γ+.

If  U ∈ pin(B) , then  SU(x) = s-1 U


x U


, where s = Φ(U) ∈ S

Chapter 7  Finer structures in Clifford algebra 

Theorem 7.1. Let (ai) be an orthogonal basis for V , Vκ =V ⊕ aκ, aκ  orthogonal to V,  aκ
2 = ε invertible, and Bκ

the extension of B to Vκ.

Define  a  linear  mapping  f : V → ℓ(Bκ)
+  by  u → u aκ.  Then  f  extends  uniquely  to  an  algebra  isomorphism

F : ℓ(-ε B)→ ℓ(Bκ)
+.

Definition 7.2. An algebra A is called simple, if A has no twosided ideals other than 0 and A. 

The center Z = Z(A) of an algebra A consists of the elements commuting with all the elements of A.

Theorem 7.3. Assume  is a field of characteristic≠2. Then, 

if M  is finite and odd, then Z = Z(ℓ(B)) = eM +(V0)
+, and otherwise Z =(V0)

+, where V0 is the radical or
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if  finite

kernel of B. 

Lemma 7.4. For algebra A and f ∈ A assume f 2 = f . Then

1. (1 - f )2 = (1 - f ) and f (1 - f ) = 0.

2. ℐ- = A f   is a left ideal.

3. P- : X → X f  is an algebraic projection onto ℐ-, such that  P-
2 = P-, (1 - P-)

2 = (1 - P-) and P- (1 - P-) = 0

with 1 = idV .

    Moreover  X ∈ ℐ- ⇒ P-(X ) =X

4. If f ∈ Z(A), then ℐ- is as a twosided ideal, and  P- : A → ℐ- is an algebra homomorphism.

As (1 - f )  has the same properties  as those mentioned of   f,  it  give likewise rise to objects  ℐ+ = 1 - ℐ+  and

P+ = 1 - P-.

Analogous statements to (1-3) holds and furthermore

5. ℐ-⊕ℐ+ = A

Theorem 7.5. Assume   is a field of characteristic≠2 and B is regular. Then

1. If M  is even or infinite, then ℓV (B) is simple.

2. Assume M   finite and odd. Then

         ℐis a non-trivial ideal  ⇔  ∃λ : ℐ = ℓ(B) (1 + λ eM) and λ2 eM
2 = 1.  

3. Assume M   finite and odd, and  λ2 eM
2 = 1.  Then

  (3a) f± = (1 ± λ eM) /2 ∈ Z(ℓ(B)), f± f∓ = 0 and f±
2 = f±. 

  This gives projections and algebra homomorphisms P±(X ) =X f± onto proper ideals ℐ± = P±(ℓ(B)), such that 

  P- + P+ = Idℓ(B), P- P+ = 0, P±
2 = P±,   and   ℐ-⊕ℐ+ = ℓ(B). 

 (3b) P±(X ) ·Y =X ·P±(Y)

 (3d) ℓ(B)+isomorphic to each ideals ℐ± by the restriction of P± to ℓ(B)+.

 (3e) ℓ(B)+ and ℐ± are all simple.

 (3f) The only non-trivial ideal in ℓV (B) are ℐ- and ℐ+.

Theorem 7.6. Assume B is regular and   is a field of characteristic≠2, that M  is finite >1 and odd, and also that

λ ∈  can be found, such that λ2 eM
2 = 1.   Then

1. In  (V , B) exists besides ℓV (B) only the algebras U± = ℓ (B) /ℐ±.

2. If eM

= eM, then ℓ(B) /ℐ± has reversion and no conjugation. 

Otherwise, if  eM = eM, then  ℓ(B) /ℐ± has conjugation and no reversion.  

Lemma 7.7. Let xi ∈ V, then x1 x2 … xp - x1 ⋀x2 ⋀…⋀ xp ∈ Λ<p(V ) .

Theorem 7.8. Let (xi i ∈ I) be linear independent in V. 

1. Then (xK K ⊆ I , K finite) is linear independent.  

2. Assume (xi i ∈ I) is a basis for V , and K ⊆ I , K finite.

Then the quantization transformation f : (V )→ (V ) is well-defined by linearity and f (x⋀K) = xK.

Moreover (xK) is a basis for (V ).  

Definition 7.9.   In ℓ(B) define parity of X by par(X ) = p ⇔ grade(X ) ≡ p (mod 2).

Also set ℓ(B)- = {X par(X ) = 1} and ℓ(B)+ = {X par(X ) = 0} 

Parity makes ℓ(B) a graded algebra:    par(X ) = r and par(Y) = s ⇒ par(X Y) = r + s mod(2).
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Definition 7.10.  To every Clifford algebra ℓ(B, V ) is associated a twisted algebra ℓ(B, V )tw in the same linear

space with multiplication defined by linearity and X τ Y = (-1)r s X Y, when par(X ) = r and  par(Y) = s

1. This gives an algebra structure, such that x τ x = -x2 for x ∈ V. The twisted of the twisted algebra is the original.

2. The universal extension of idV  is an algebra isomorphism  F : ℓ (-B, V )→ ℓ(B, V )tw.

Chapter 8  Chevalley’s construction of Clifford algebras from tensor algebras

Theorem 8.1. Let  = (V , ⊗) be the tensor algebra over V. For any algebra A over  and any linear mapping

τ : V → A, there is a unique algebra morphism Τ :  → A that extends τ. 

 

Definition 8.2. Let ℐ = ℐ(V , B) be the two-sided ideal in  = (V ) generated by  = {x⊗x - B(x, x) 1 x ∈ V }.

The Clifford algebra  ℓV (B) is then defined as the quotient algebra  ℓ = /ℐ together with π
 :  → ℓ the

canonical algebra morphism. 

 

Definition  8.3.  Let  (V , B)  be  the  category  of  linear  mappings  f  from  V  into  an  algebra  A,  such  that

f (x)2 = B(x, x) 1A. 

A mapping ω : V → U in (V , B) is said to be universal, if  for every linear mapping f : V → A in (V , B),  there is

a unique algebra morphism F : U → A such that F∘ω = f .   (i.e.  f : V ⟶
ω

U ⟶
F

A)

Theorem 8.4. 

1. π = π


V  from definition 8.2 is a universal object in (V , B). 

2. Assume B is symmetric. 

   Then π : V → ℓ is injective and has an extension  G : ℓV (B)→ ℓ to an algebra isomorphism, and therefore 

G(1ℓV(B)) = 1ℓ.

  Therefore a Cliford algebra in the version presented in definition 1.1 is also a Chevalley Cliford algebra. 
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