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Geometric Algebra formula collection v.2.0

Chapter 1 Definition of a Clifford algebra

Definition 1.1. A Clifford algebra U over B, is an algebra containing V, such that

1. Vyey @ x2= Bx, x) 1y

2. V generates U

3. VNKl1y={0}

Let A(V, B) be the category of Clifford algebras over B.

U is called (initial-) universal in AV, B), if

4. Any linear mapping f : V — A into an algebra A, such that f(x)* = B(x, x) 14, has a unique exacortzen@gmail.-
comfacortzen@gmail.comtension to algebra morphism F: U — A. This extension is called the universal extension.

Theorem 1.2. Assume algebras U; are universal in A(V;, By), [ : V1 - Vy is K-linear and f: V| -V, is K-linear.
Then f has a unique extension, F: Uy - U, to an algebra morphism, which is an isomorphism, if f is bijective.

Corollary 1.3. An universal algebra in AV, B) is uniquely determined aside from isomorphisms fixing V.

Corollary 1.4. Assume algebras U; are universal in A(V;, B;) and f;: Vi - Vi1 is K-linear.
Let F;: U; = Uy be the unique extensions to algebra morphisms.
Then the unique extension of fro...o fi to an algebra morphism is Fyo...o Fy.

Chapter 2 Construction of a universal Clifford algebra

Definition 2.1. Let for sets H, J € F
a(H,J)=T1(-1)for (h, j)e HxJand h > j
B(H, J) =T g(e) forie HNJ,
o=af

Theorem 2.2. Define a product (X, Y) > X Yin Wby eyey=0(H, J) ey oy and bilinearity.
Then W becomes a Clifford algebra in A(V, B).

Lemma 2.3. oH,)oHAJ,K)=0(H,J rK)o(, K),
Corollary 2.4. e;=1l je;.

Theorem 2.5. 1. W is universal in AV, B).

Hence W is uniquely determined by universality in A(V, B) aside from isomorphism.

W is denoted C{(B, V) or C{(B).

2. If (a;| i€ M") be an orthogonal basis for V, then (ax | K € M’, K finite) is a basis for C{(B, V).

3. The Clifford product is independent of selection of orthogonal basis, if the product is constructed in C{(B, V).

Definition 2.6. Let RP4" be a real vector space of dimension n = p + q + r with a symmetric bilinearform B that in
diagonal form has (p, q, r) times (1, —1, 0)'s respectively in that order. To this correspond a Clifford algebra
Ry g If =0, rcan be omitted.
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The complex case Cp, is defined likewise, but without q and —1.

Chapter 3 The Grassmann algebra over V

Theorem 3.1. In A(V) define the submodule of elements of grade r € Z by
N (V) =span{Ari_ia;|a; € V} for r = 0 and otherwise A.(V) = {0}.
This makes A(V) a graded algebra, as obviously A,(V)AN;(V) C Aprs(V).
Also define x - (x),, as the projection on N, (V) along @z, Ni(V'), and {x) = {x)y.
Set Aep(V) = ®icp Ai(V), and also x - (x)p = ®er (x),, where R is a subset of Z.
Then
1. AV)=,ANV)and A,(VYANV) = Ay (V).
If IM| is finite, then rank(Apg(V)) = 1 and A(V) =0 for r > |M]|
2. xAax=0and x1 Axy = —x3 AX)
3. X1 AX2 A .. AXp IS multilinear and alternating in the x-variables

Theorem 3.2. (Extension by outermorphism). A K-linear mapping f:V, >V, has a unique exten-

sion, f : A(V1) = A(V>) to an algebra morphism, which is grade preserving. Moreover f, is bijective, if f is.

Proof: As f(x) A f(x) = 0, the assertion follows from universal extension, which is grade preserving, as an algebra
morphism.

Theorem 3.3 (The Invariant basis property). Two bases for V have the same finite size or are both infinite.

Theorem 3.4. Assume M is finite. Then with respect to any basis
1. |M|=rank(V) and |M|=max{r|A(V)=+0}

2. /\|M|(V) =K ey

3. rank(A(1) = (M)

4. rank(A(Y)) = 2M and rank(A(V)*) = rank(A(V)") = 2M-1

Theorem 3.5. From C{(B, V) any non isomorphic Clifford algebra A in AV, B) can be found as a quotient
C{(B, V) /I with ideal T +{0}.
If M is finite, then A in AV, B) is non-universal < rank(4) = 2¥ and k < |M|.

Definition 3.6. The geometric algebra G(B, V) or G(V) is the double algebra of C{(B, V) and A(V) in the same
space.
Forx; eV set xy=1licrr xi and x.j = AjerrXi. By construction e = ey.

Chapter 4 Morphisms

Definition 4.1. To every algebra A is in the same linear space associated an opposite algebra A° with multiplica-
tion XoY =Y X.

The linear identity A — A°is an anti-automorphism, and is also denoted o : A — A°. Moreover A% = A and 0* = id,.

That this multiplication makes A° an algebra is easily verified, and also that 4°° = 4 and 0? = id,.

Theorem 4.2. For any algebra A over K and any linear mapping f:V — A such that f (x)*> = B(x, x) 14, there
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exists a unique algebra anti-morphism F°: Cl(B, V) — A, which extends f. This extension is also called the
universal anti-extension.

Corollary 4.3. Assume algebras U; belongs to A(V;, B;) and f; : Vi = Vi1 is K-linear.

Then f; has a unique extension, U; » Uy to an algebra anti-morphism, which is an anti-isomorphism, if f; is
bijective.

Let F;: U; - Ui 1be a morphism or an anti-morphism and F = Fyo...o F\. If the number of anti-morphism in the
composition is odd, then F is anti-morphism, and otherwise a morphism.

Definition 4.4. Let U be a Clifford algebra in A(V, B), not necessarily universal.
As proved a linear mapping f: V — V has at most one extension to an automorphism or anti-automorphism of U.
If they exists,
the main or grade automorphism X — X is the extension of f : V =V, f(x) = —x to an automorphism of U.
the reversion X — X is the extension of f : V -V, f(x) = x to an anti-automorphism of U.
the Clifford conjugation X — X is the extension of f : V =V, f(x) = —x to an anti-automorphism of U.

Theorem 4.5. Cly(B) is extended to a geometric algebra to make the grade concept available.

1. In Cty(B) the main automorphism, the reversion, and the Clifford conjugation exists.

2. For the main automorphism holds grade (X)=r=X = (-1 X

3. For the reversion  holds XY =YX (@a..a) =a ..acxa for a;eV and

grade (X) =r=>X = (-1y-D2x

4. For the Clifford conjugation holds X =X~ and grade (X)=r=X = (=12 x

5. These three mappings are grade preserving, involutions, commuting and independent of the B. Each one is the
composition of the two others.

Chapter 5 Basic structure of Geometric algebra

Definition 5.1. Set ys =1, if the proposition S is true, and else zero. Define in G(B, V) compositions -,] and | by
bilinearity by

er-ey= XH=j emey, the scalar product,

ernler= xucs emey, the left contraction,

ernles= xmu-s emey, the right contraction.

We already know from the product definition based on the a and f3 functions that

EeHNe;= XHNJ=( €H¢€eJ

Theorem 5.2. In a geometric algebra G(B, V) holds
1. xX=x]X+xAX and Xx=Xarx+X|x
x-y=Bx,y)lg,
2. Ifgrade(X)=rand grade(Y) =s, then
XY=(XV=(YX)=YV-X, X|V=(XV),, X|V=(XV)y and XAY=(X V).,
The three main involutions are symmetric, X-Y=X-Y, X-Y=X.¥, X.Y=X.Y
3. Ifgrade(X) =r and grade(Y) =s, then
rEs=XY=0, Y| X=(X]7) =D X|Y and X Y =S5 gep 2 (X V)i
4 XAV Z=X](Y1Z) and (XAY)-Z=X-(Y]Z)
5. x]XDN=xINY+X(x]Y)
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XAX =X Y+X (x AY)
XAX Y =(@AX)Y-X(x]7)
XX N=xAX)Y-X(x AY)
6. x]JXA)=(]|X)AY +XA(x]Y)
XAX]IN =]V +X]|(xAY)
7. x)(x1x . x) = Yo (DR Xy x (xek) e Xp
8. x](x1Ax2A .. AXp) = S (=D oy Axy . A (xek) c AXp
. X1, X2, ..., Xp are pairwise orthogonal =TV x; = AlZ) X;
10. xX—)A(x:ZXJXandxX-i-)A(x: 2xnaX
11. Viyey xAA =0) & (4 € Keyy, if IM| is finite, and otherwise A = 0).
Assume K is a field or the weaker condition p e} =0 = (,u =0or e = O) forie M, pekK. Then
Vier (x]4=0) = A€ G(Vy), where Vy is the radical or kernel of B. (NB: Always KCG(Vy))
12, (0} AX2 e AXR) - (Vr A A2 AYD) = Zg So (X1 Vo)) -+ - (5 Vo)
where summation is over all permutations o of {1, ..., r}.
13. Factor expansion of x.x: Let X =x.g and Be A,(V). If tg=a(H, K\H) (B- x,y) € K *), then
Bl X = Epck, |Hi=s THXAKH
*) @ is from definition 2.1: a(H,J)=I1(-1)for (h, j))e HxJand h > j

Determinant Theorem 5.3. Let [V — Vbe linear mapping.
1. If' V has a finite basis, then the determinant det(f) is defined by F(eyr) = det(f) eys independent of basis.
2. Moreover (fog). = froga, det(fog) = det(g) det(f), and det(f") det(f) = 1 when f'is bijective.

3. Assume m =|M|, M ={1, ..., m} and f(as) =Z; & a; in some basis (a; | i € M). Then

det(f) = 2, sign(o) ( 0 ) where summation is over all permutations o of M.

Automorphism Theorem 5.4. Let f -V — Vbe linear mapping, such that f(x)> = B(x, x) 14. Then f has two univer-
sal extensions:

To an outermorphism f, : A(V) - A(V), and to Clifford algebra isomorphism F:Ctly(B) - Cly(B).

Assume B(f(x), f(»)) = B(x, y), or K is a field not of characteristic 2. Then f, is called the universal extension of f
to GB, V), as

F=f., and thus is an outermorphism, and furthermore grade preserving, an orthogonal isomorphy, an isomorphy
for | and |, and commutes with the three main involutions.

Anti-automorphism Theorem 5.5. Let f -V — Vbe linear mapping, such that f(x)> = B(x, x) 14. Then f has two
universal anti-extensions:

To an anti-outermorphism % : A(V) - A(V), and to Clifford algebra anti-isomorphism FT :Cly(B) - Cly(B).
Assume B(f(x), f()) = B(x, ), or K is a field not of characteristic 2. Then f¥ is called the universal anti-extension
of ftoG(B, V), as

1. F* = fT, and thus is an anti-outermorphism, grade preserving, an orthogonal isomorphism and commutes with
the three main involutions. Furthermore F'(X]Y) = F7(Y) [F*(X) and F*(Y | X) = F*"(X)] F*(Y).

2. If 'V has a finite basis, then F*(ey) = (—=1)MIM=D/2 det(f) ey,.

Theorem 5.6. Assume B is regular and K is a field of characteristic+2. Then
A is universal in A(V, B) & A has a main automorphism
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Definition 5.7. A list of elements in a module is linear independent, if the only (finite) linear combination of the
elements giving zero is that with zero factors. Linear dependent means not linear independent.
Obviously holds: A list of elements is linear independent < every finite sublist is linear independent

Theorem 5.8. Let H be finite. Then
A: (xp | h € H) is linear independent < B: x,y is linear independent < C: (x.x | K C H) is linear independent

Corollary 5.9. S=(x1, X2 ..., Xp) is linear independent < S.=x1AXoA... X, is linear independent

Corollary 5.10. Allow Hy C M to be infinite. Then
(xn | h € Hy) is linear independent & (x.x| K C Hy, K finite) is linear independent

Definition 5.10. If U is a submodule of V, then set A(U) = span {ALy U | m € N}, which obviously is the Grassmann-

algebra generated by U.
Also set Aso(U) = span {AL, U |m e N}

Theorem 5.11. Let A = any be a blade.
Define modules Vy={xeV|xrA=0}, Vyr ={x €V |Vhen x-a, =0} and set A" = A(V4), A* = Aso(V4L).
Obviously spanfa, | h € HY C V4 implying A({span{a; | h € H}) C A". Moreover also Vi ={0} and V. =V and
1"={0}, 1+ = Aso(V).
Omitting n like in X C A instead of X C A" can be used, if it is clear that A means an algebra and not a blade.
Inclusions like X C A" or X C A* may be used for elements, as in e} C A" meaning {e;} C A"
Then
1. X espan{aspy,, ..., arp | Vnew HnCH} =X C 4"
NB: The opposite inclusion is true, if V' is a vectorspace; but not generally for modules.
2. B]AcCA"
3. Cl]A=CA, when CC A"
4. A2=A|A=A-A and Ais invertible & A-A invertible = A~ ' =A/(4-A)
5. Assume A is invertible. Then span{a, | he H} =V,.
NB: In Corollary 6.2.5 is proved: A4 invertible = V=V, V4.

Lemma 5.12. Let A be a blade. Then

1. IfCcA™
(C]|B)A=CA(BA)
(C1B)]A=CA(B]A)
(CAB)A=C|BA)
(CB)JA=C(B]A)

2. IfCcK+4+:
(ClB)A=C](BA)
(CIB)AA=C](BArA)
(CABY)A=CA(BA)
(CB)YAA=C(BArA)

Chapter 6 Geometric transformations
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Theorem 6.1. For a h-blade A assume p = A-A is invertible, thus A~' = p~' A.
Define the projection on A as P4(X) = P(X) = (X] A)] A7".

1. Then P is grade preserving,

2PN =X]DA™, PO =ptAUALX)=p AL (A1X)
3.XCcA=>PX)=X, PX)C A4, P’(X)=PX)

4. PINV)=A4", PV)=V4 , P(A4*")={0}.

5. Pis symmetric, X-P(Y) = P(X)-Y

6. Moreover P is an outermorphism.

Corollary 6.2. Define the rejection of X by A as Q4(X) = Q(X) =X — P4(X). Then

Corollary 6.3. Define the projection along A, P*, as the extension of Q4(x) by outermorphism. Then P4 is grade
preserving, and

LPAX)=PX) =4 AAX)=ATAAX) =X AA) AV = (X AA) |4 c 4+

2XCcA*=>PX) =X, PX)cCd*, P2X)=PX), PA")={0}, and PyoPi=P4oPs=0

3. Symmetry X -P(Z) =PX)-Z

Theorem 6.4 Projection P5 on A along B (with (A A B)* fixed). Assume K is a field not of characteristic 2.

For a r-blade A and a s-blade B let C=AAB and assume C is invertible and set 1= (BAA)-C. Then
Cl=(=1ysn' Cand

1.V=V,®Ve®V.c as direct sum of vectorspaces, and this defines projections. P5 is the projection on V,®V.c
along V.

2. P& extended by outermorphism gives P5(X)=n"1(4] C)J (BArX)

3XCAV4+Vie)>PX)=X, XCB=>PX)=0, PX)C AV, +V.c), P2(X)=P(X), PioP}=PhoPs =PC,
P4+ PE—PC =iy

Theorem 6.5. For a h-blade A assume p = A-A is invertible, such that A=' = p~! A.
Define the reflection along A by linearity and
RAX) =RWX) = (=1)""AX A~', when grade(X) =r. Then
1. RAx)=Ax A"
R(x)=x—2 P(x)
R(P(x)) = —P(x) and R(Q(x)) = O(x) justify the words “along A’
2. Also R*(X) =X, and R(X)-R(Y)=X"Y.
3. Moreover R is a Clifford algebra isomorphism and universal extension of its restriction to V.
R is e.g. grade preserving and an outermorphism, as the Automorphism Theorem 5.4 apply to R.
4. Also R(P(X)) = P(X) , R(PA(X)) =PAX), Ris symmetric, R(X)-Y = X-R(Y)
5. If V has a finite basis, then det(RA) =(=1)

Corollary 6.6. Define the reflectionin A as Ry(X)=R(X)= RAKX). Then
1. RyX)=(=1)""AX A" and, ifx eV, then

Ry(x) = —RA(x) = —Ax A~}

R(x)=—x+2P(x)

R(P(x)) = P(x) and R(Q(x)) =—Q(x) supports the words ‘in A"
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2. Also R*(X) =X, and RXX)-R(Y) =X -Y.
3. Moreover Ry is a Clifford algebra isomorphism and universal extension of its restriction to V.
R is e.g. grade preserving and an outermorphism, as the Automorphism Theorem 5.4 apply to R.
4. R(P(X)) = P(X), R(PA(X)) =PAX), RAX)=X, R is symmetric, R(X)-Y =X -R(Y)
5. If V has a finite basis, then det(R,) = (=1)+M

Definition 6.7 A versor of order h or a h-versor, U =u ... uy, as a product of invertible elements u; € V.
1. As U= = u;' ... u7! a versor transformation of C{(B, V) is defined by linearity and
SX) =SyX) = (-1 UX U™ ,when grade(X)=r, e.g. Sx)=UxU"!
1. As Sy=Rtro.. oRU the Automorphism Theorem apply to Sy, and, if V has a finite basis, then det(Sy) = (=1)"
2. The Clifford group T is the multiplicative group of versors.
Define I'Y, the rotation versors, as the versors of even order, which obviously is a subgroup of T of index 2.
The orthogonal isomorphisms V — V is a group under composition ° , the orthogonal group O(B).
The mapping ¥ : U — Sy is a multiplicative morphism from I into the orthogonal group O(B).

Lemma 6.8. The mapping ¥ : U — Sy is a multiplicative morphism from T into the orthogonal group O(B).

Theorem 6.9. Assume K is a field not of characteristic 2, V has a finite basis and B is regular.
1. Then from the Cartan-Dieudonne theorem follows that any orthogonal isomorphism of V can be expressed as
Sx)=UxU-', where U is a h-versor with h < n = dim(V).
2 V¥eey UxU'=TxT" imply TeK*U.
3. ¥:T - O(B) is onto O(B) with kernel ¥~1(idy) = K*
Also ¥ maps T't onto O*(B), the orthogonal isomorphisms with determinant 1 called rotations.
4. Moreover, if Yyey ¥(x) = TxT-'eV, then Tis a versor.

Corollary 6.10. The mapping ® : U - U U € K* is a multiplicative morphism, ®T) is a multiplicative group, and
() = &) K*2.

2. Assume K* = Sx (K*)? as direct product of multiplicative subgroups S and (K*)?, like e.g. R* ={+1}x(R*)? or
C* = {1}x(C*)2.

Then each U € T can be normalized as t U, such that ®(t U) € S, and t is unique apart from a factor + 1.

Define pin(B) = ®~1(S) and spin(B) = pin(B) '+, pin*(B) = ®!(1) and spin*(B) = pin*(B) (" I'*.

If Uepin(B), then Sy(x)=s"'UxU, wheres=®U)e S

Chapter 7 Finer structures in Clifford algebra

Theorem 7.1. Let (a;) be an orthogonal basis for V, V.=V &K a,, a, orthogonal to V, a’ = ¢ invertible, and B,
the extension of B to V.

Define a linear mapping f:V - Cl(B)" by u - uay. Then f extends uniquely to an algebra isomorphism
F:Cl(—eB) > Cl(B,)*.

Definition 7.2. An algebra A is called simple, if A has no twosided ideals other than 0 and A.
The center Z = Z(A) of an algebra A consists of the elements commuting with all the elements of A.

Theorem 7.3. Assume K is a field of characteristic+2. Then,
if IM| is finite and odd, then Z = Z(Ct(B)) =K ey + G(Vo)*, and otherwise Z = G(Vy)*, where V) is the radical or
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kernel of B.

Lemma 7.4. For algebra A and f € A assume f* = f. Then
L= =0~-fandf(1-1)=0.
2.T_=Af isaleft ideal.
3. P_:X > X f is an algebraic projection onto I _, such that P2=P_, (1-P_)>=(1-P_)and P_(1-P_)=0
with 1 =idp.
Moreover Xe I_=>P_(X)=X
4. If f € Z(A), then I_ is as a twosided ideal, and P_: A — I_ is an algebra homomorphism.
As (1 = f) has the same properties as those mentioned of f, it give likewise rise to objects I, =1—-1, and
P, =1-P..
Analogous statements to (1-3) holds and furthermore
5.7_@1,=4

Theorem 7.5. Assume K is a field of characteristic+2 and B is regular. Then
1. If |M| is even or infinite, then C{y(B) is simple.
2. Assume |M| finite and odd. Then
Tis a non-trivial ideal < 3y : T =Cl(B) (1 +Aey) and A2 e}, = 1.

3. Assume |M| finite and odd, and A* e}, =1. Then

(3a) fe=(1xXdey)/2€ Z(CLB)), f+ f+=0and [} =f..

This gives projections and algebra homomorphisms P.(X) = X f. onto proper ideals I . = P.(C{(B)), such that

P_+P,=Ideyp, P-P.=0, Pi=P., and I_&I,=Cl(B).

(3b) Po(X)-Y =X -Pu(Y)

(3d) Ct(B)*isomorphic to each ideals I . by the restriction of P to Cl(B)*.
(3e) Ct(B)* and I .. are all simple.

(3f) The only non-trivial ideal in Cly(B) are I_ and I ,.

Theorem 7.6. Assume B is regular and K is a field of characteristic+2, that |M| is finite >1 and odd, and also that
A €K can be found, such that A*> e3;=1. Then

1. In AV, B) exists besides Cly(B) only the algebras U, =Cf (B)/1 ...

2. If ey = ey, then Cl(B)/ I + has reversion and no conjugation.

Otherwise, if ey = ey, then C{(B)/I . has conjugation and no reversion.

Lemma’l.7. Letx; €V, then x1 X3 ... Xp = X1 AXa A A Xp € Ay (V).

Theorem 7.8. Let (x; | i € I) be linear independent in V.

1. Then (xx | K C 1, K finite) is linear independent.

2. Assume (x;| i €1) is a basis for V, and K C I, K finite.

Then the quantization transformation f: G(V) - G(V) is well-defined by linearity and f(x x) = xk.
Moreover (xg) is a basis for G(V).

Definition 7.9. In Cl(B) define parity of X by par(X) = p & grade(X) = p (mod 2).
Also set C{(B)” ={X | par(X) = 1} and C{(B)* = {X | par(X) = 0}
Parity makes C{(B) a graded algebra: par(X)=randpar(¥Y)=s = par(X ¥) =r +smod(2).
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Definition 7.10. To every Clifford algebra C{(B, V) is associated a twisted algebra Cl(B, V)™ in the same linear
space with multiplication defined by linearity and X Y = (—=1)"* X Y, when par(X) = r and par(Y)=s

1. This gives an algebra structure, such that x 7 x = —x? for x € V. The twisted of the twisted algebra is the original.
2. The universal extension of idy is an algebra isomorphism F:Ct (=B, V) - C{(B, V).

Chapter 8 Chevalley’s construction of Clifford algebras from tensor algebras

Theorem 8.1. Let T =T (V, ®) be the tensor algebra over V. For any algebra A over K and any linear mapping
T:V = A, there is a unique algebra morphism T : T — A that extends .

Definition 8.2. Let I = I(V, B) be the two-sided ideal in T =T (V') generated by S = {x®x — B(x, x) lq-|x € V}.
The Clifford algebra CC{ly(B) is then defined as the quotient algebra CCl =7 | I together with 7t : T — CCYt the
canonical algebra morphism.

Definition 8.3. Let K(V, B) be the category of linear mappings f from V into an algebra A, such that

f(0)* = Bx, x) Lu.

A mapping w:V - U in K(V, B) is said to be universal, if for every linear mapping f:V — A in K(V, B), there is
a unique algebra morphism F: U — A such that Fow=f. (i.e. f: V-5 ULA)

Theorem 8.4.
1. m =7 |y from definition 8.2 is a universal object in K(V, B).
2. Assume B is symmetric.
Then r:V — CCt is injective and has an extension G :Cfy(B) — CC{ to an algebra isomorphism, and therefore
G(erys) = leer-
Therefore a Cliford algebra in the version presented in definition 1.1 is also a Chevalley Cliford algebra.



