Geometric Algebra formula collection v.2.0

Chapter 1 Definition of a Clifford algebra

Definition 1.1. A Clifford algebra U over B, is an algebra containing V, such that

1. $\forall_{x \in V}: x^{2}=B(x, x) 1_{U}$
2. V generates U
3. $V \cap \mathbb{K} 1_{U}=\{0\}$.

Let $\mathcal{A}(V, B)$ be the category of Clifford algebras over B.
U is called (initial-) universal in $\mathcal{A}(V, B)$, if
4. Any linear mapping $f: V \rightarrow A$ into an algebra A, such that $f(x)^{2}=B(x, x) 1_{A}$, has a unique exacortzen@gmail.comfacortzen@gmail.comtension to algebra morphism $F: U \rightarrow A$. This extension is called the universal extension.

Theorem 1.2. Assume algebras U_{i} are universal in $\mathcal{A}\left(V_{i}, B_{i}\right)$, $f: V_{1} \rightarrow V_{2}$ is \mathbb{K}-linear and $f: V_{1} \rightarrow V_{2}$ is \mathbb{K}-linear. Then f has a unique extension, $F: U_{1} \rightarrow U_{2}$ to an algebra morphism, which is an isomorphism, iff is bijective.

Corollary 1.3. An universal algebra in $\mathcal{A}(V, B)$ is uniquely determined aside from isomorphisms fixing V.

Corollary 1.4. Assume algebras U_{i} are universal in $\mathcal{A}\left(V_{i}, B_{i}\right)$ and $f_{i}: V_{i} \rightarrow V_{i+1}$ is \mathbb{K}-linear.
Let $F_{i}: U_{i} \rightarrow U_{i+1}$ be the unique extensions to algebra morphisms.
Then the unique extension of $f_{k} \circ \ldots \circ f_{1}$ to an algebra morphism is $F_{k} \circ \ldots \circ F_{1}$.

Chapter 2 Construction of a universal Clifford algebra

Definition 2.1. Let for sets $H, J \in \mathcal{F}$

$$
\begin{aligned}
& \alpha(H, J)=\Pi(-1) \text { for }(h, j) \in H \times J \text { and } h>j \\
& \beta(H, J)=\Pi q\left(e_{i}\right) \text { for } i \in H \bigcap J, \\
& \sigma=\alpha \beta
\end{aligned}
$$

Theorem 2.2. Define a product $(X, Y) \rightarrow X Y$ in W by $e_{H} e_{J}=\sigma(H, J) e_{H \Delta J}$ and bilinearity.
Then W becomes a Clifford algebra in $\mathcal{A}(V, B)$.

Lemma 2.3. $\quad \sigma(H, J) \sigma(H \Delta J, K)=\sigma(H, J \Delta K) \sigma(J, K)$,

Corollary 2.4. $e_{I}=\Pi_{I} e_{i}$.

Theorem 2.5. 1. W is universal in $\mathcal{A}(V, B)$.
Hence W is uniquely determined by universality in $\mathcal{A}(V, B)$ aside from isomorphism.
W is denoted $C \ell(B, V)$ or $C \ell(B)$.
2. If ($\left.a_{i} \mid i \in M^{\prime}\right)$ be an orthogonal basis for V, then ($a_{K} \mid K \subseteq M^{\prime}$, K finite) is a basis for $C \ell(B, V)$.
3. The Clifford product is independent of selection of orthogonal basis, if the product is constructed in $C \ell(B, V)$.

Definition 2.6. Let $\mathbb{R}^{p, q, r}$ be a real vector space of dimension $n=p+q+r$ with a symmetric bilinearform B that in diagonal form has (p, q, r) times $(1,-1,0)$'s respectively in that order. To this correspond a Clifford algebra $\mathbb{R}_{p, q, r}$. If $r=0, r$ can be omitted.

The complex case $\mathbb{C}_{p, r}$ is defined likewise, but without q and -1 .

Chapter 3 The Grassmann algebra over V

Theorem 3.1. In $\Lambda(V)$ define the submodule of elements of grade $r \in \mathbb{Z}$ by
$\Lambda_{r}(V)=\operatorname{span}\left\{\wedge_{i=1}^{r} a_{i} \mid a_{i} \in V\right\}$ for $r \geq 0$ and otherwise $\Lambda_{r}(V)=\{0\}$.
This makes $\Lambda(V)$ a graded algebra, as obviously $\Lambda_{r}(V) \wedge \Lambda_{s}(V) \subseteq \Lambda_{r+s}(V)$.
Also define $x \rightarrow\langle x\rangle_{r}$, as the projection on $\Lambda_{r}(V)$ along $\oplus_{i \neq r} \Lambda_{i}(V)$, and $\langle x\rangle=\langle x\rangle_{0}$.
Set $\Lambda_{<p}(V)=\oplus_{i<p} \Lambda_{i}(V)$, and also $x \rightarrow\langle x\rangle_{R}=\oplus_{r \in R}\langle x\rangle_{r}$, where R is a subset of \mathbb{Z}.
Then

1. $\Lambda(V)=\oplus_{r} \Lambda_{r}(V)$ and $\Lambda_{r}(V) \wedge \Lambda_{s}(V)=\Lambda_{r+s}(V)$.

If $|M|$ is finite, then $\operatorname{rank}\left(\Lambda_{|M|}(V)\right)=1$ and $\Lambda_{r}(V)=0$ for $r>|M|$
2. $x \wedge x=0$ and $x_{1} \wedge x_{2}=-x_{2} \wedge x_{1}$
3. $x_{1} \wedge x_{2} \wedge \ldots \wedge x_{p}$ is multilinear and alternating in the x-variables

Theorem 3.2. (Extension by outermorphism). A \mathbb{K}-linear mapping $f: V_{1} \rightarrow V_{2}$ has a unique extension, $f_{\wedge}: \Lambda\left(V_{1}\right) \rightarrow \Lambda\left(V_{2}\right)$ to an algebra morphism, which is grade preserving. Moreover f_{\wedge} is bijective, iff is.
Proof: As $f(x) \wedge f(x)=0$, the assertion follows from universal extension, which is grade preserving, as an algebra morphism.

Theorem 3.3 (The Invariant basis property). Two bases for V have the same finite size or are both infinite.

Theorem 3.4. Assume M is finite. Then with respect to any basis

1. $|M|=\operatorname{rank}(V)$ and $|M|=\max \left\{r \mid \Lambda_{r}(V) \neq 0\right\}$
2. $\Lambda_{|M|}(V)=\mathbb{K} e_{M}$
3. $\operatorname{rank}\left(\Lambda_{r}(V)\right)=\binom{|M|}{r}$
4. $\operatorname{rank}(\Lambda(V))=2^{|M|}$ and $\operatorname{rank}\left(\Lambda(V)^{+}\right)=\operatorname{rank}\left(\Lambda(V)^{-}\right)=2^{|M|-1}$

Theorem 3.5. From $C \ell(B, V)$ any non isomorphic Clifford algebra A in $\mathcal{A}(V, B)$ can be found as a quotient $C \ell(B, V) / \mathcal{I}$ with ideal $\mathcal{I} \neq\{0\}$.
If M is finite, then $\quad A$ in $\mathcal{A}(V, B)$ is non-universal $\Leftrightarrow \operatorname{rank}(A)=2^{k}$ and $k<|M|$.

Definition 3.6. The geometric algebra $\mathcal{G}(B, V)$ or $\mathcal{G}(V)$ is the double algebra of $C f(B, V)$ and $\Lambda(V)$ in the same space.
For $x_{i} \in V$ set $x_{I}=\Pi_{i \in I, \uparrow} x_{i}$ and $x_{\wedge I}=\wedge_{i \in I, \uparrow} x_{i}$. By construction $e_{\wedge I}=e_{I}$.

Chapter 4 Morphisms

Definition 4.1. To every algebra A is in the same linear space associated an opposite algebra A^{o} with multiplication X o $Y=Y X$.
The linear identity $A \rightarrow A^{\circ}$ is an anti-automorphism, and is also denoted $o: A \rightarrow A^{\circ}$. Moreover $A^{o o}=A$ and $o^{2}=\operatorname{id}_{A}$. That this multiplication makes A^{o} an algebra is easily verified, and also that $A^{o o}=A$ and $o^{2}=\mathrm{id}_{A}$.

Theorem 4.2. For any algebra A over \mathbb{K} and any linear mapping $f: V \rightarrow A$ such that $f(x)^{2}=B(x, x) 1_{A}$, there
exists a unique algebra anti-morphism $F^{o}: C \ell(B, V) \rightarrow A$, which extends f. This extension is also called the universal anti-extension.

Corollary 4.3. Assume algebras U_{i} belongs to $\mathcal{A}\left(V_{i}, B_{i}\right)$ and $f_{i}: V_{i} \rightarrow V_{i+1}$ is \mathbb{K}-linear.
Then f_{i} has a unique extension, $U_{i} \rightarrow U_{i+1}$ to an algebra anti-morphism, which is an anti-isomorphism, if f_{i} is bijective.
Let $F_{i}: U_{i} \rightarrow U_{i+1}$ be a morphism or an anti-morphism and $F=F_{k} \circ \ldots \circ F_{1}$. If the number of anti-morphism in the composition is odd, then F is anti-morphism, and otherwise a morphism.

Definition 4.4. Let U be a Clifford algebra in $\mathcal{A}(V, B)$, not necessarily universal.
As proved a linear mapping $f: V \rightarrow V$ has at most one extension to an automorphism or anti-automorphism of U.
If they exists,
the main or grade automorphism $X \rightarrow \hat{X}$ is the extension of $f: V \rightarrow V, f(x)=-x$ to an automorphism of U. the reversion $X \rightarrow \tilde{X}$ is the extension of $f: V \rightarrow V, f(x)=x$ to an anti-automorphism of U.
the Clifford conjugation $X \rightarrow \bar{X}$ is the extension of $f: V \rightarrow V, f(x)=-x$ to an anti-automorphism of U.

Theorem 4.5. $C \ell_{V}(B)$ is extended to a geometric algebra to make the grade concept available.

1. In $C \ell_{V}(B)$ the main automorphism, the reversion, and the Clifford conjugation exists.
2. For the main automorphism holds grade $(X)=r \Rightarrow \hat{X}=(-1)^{r} X$
3. For the reversion holds $\quad(X Y)^{\sim}=\tilde{Y} \tilde{X}, \quad\left(a_{1} a_{2} \ldots a_{r}\right)^{\sim}=a_{r} \ldots a_{2} a_{1}$ for $a_{i} \in V$ and
grade $(X)=r \Rightarrow \tilde{X}=(-1)^{r(r-1) / 2} X$
4. For the Clifford conjugation holds $\bar{X}=\hat{X}^{\sim}$ and grade $(X)=r \Rightarrow \bar{X}=(-1)^{r(r+1) / 2} X$
5. These three mappings are grade preserving, involutions, commuting and independent of the B. Each one is the composition of the two others.

Chapter 5 Basic structure of Geometric algebra

Definition 5.1. Set $\chi_{S}=1$, if the proposition S is true, and else zero. Define in $\mathcal{G}(B, V)$ compositions $\left.\cdot,\right\rfloor$ and \lfloor by bilinearity by
$e_{H} \cdot e_{J}=\chi_{H=J} e_{H} e_{J}$, the scalar product,
$\left.e_{H}\right\rfloor e_{J}=\chi_{H \subseteq J} e_{H} e_{J}$, the left contraction,
$e_{H}\left\lfloor e_{J}=\chi_{H \supseteq J} e_{H} e_{J}\right.$, the right contraction.
We already know from the product definition based on the α and β functions that
$e_{H} \wedge e_{J}=\chi_{H \cap J=\emptyset} e_{H} e_{J}$

Theorem 5.2. In a geometric algebra $\mathcal{G}(B, V)$ holds

1. $x X=x\rfloor X+x \wedge X$ and $X x=X \wedge x+X\lfloor x$
$x \cdot y=B(x, y) 1_{\mathcal{G}}$,
2. If $\operatorname{grade}(X)=r$ and $\operatorname{grade}(Y)=s$, then
$X \cdot Y=\langle X Y\rangle=\langle Y X\rangle=Y \cdot X, \quad X\rfloor Y=\langle X Y\rangle_{s-r}, \quad X\left\lfloor Y=\langle X Y\rangle_{r-s} \quad\right.$ and $\quad X \wedge Y=\langle X Y\rangle_{r+s}$
The three main involutions are symmetric, $\hat{X} \cdot Y=X \cdot \hat{Y}, \quad \tilde{X} \cdot Y=X \cdot \tilde{Y}, \quad \bar{X} \cdot Y=X \cdot \bar{Y}$
3. If $\operatorname{grade}(X)=r$ and $\operatorname{grade}(Y)=s$, then $\left.r \neq s \Rightarrow X \cdot Y=0, \quad Y\lfloor X=(\tilde{X}\rfloor \tilde{Y})^{\sim}=(-1)^{(s+1) r} X\right\rfloor Y \quad$ and $X Y=\sum_{i=|r-s| \text { step } 2}^{r+s}\langle X Y\rangle_{i}$
4. $(X \wedge Y)\rfloor Z=X\rfloor(Y\rfloor Z)$ and $(X \wedge Y) \cdot Z=X \cdot(Y\rfloor Z)$
5. $x\rfloor(X Y)=(x\rfloor X) Y+\hat{X}(x\rfloor Y)$
$x \wedge(X Y)=(x\rfloor X) Y+\hat{X}(x \wedge Y)$
$x \wedge(X Y)=(x \wedge X) Y-\hat{X}(x\rfloor Y)$
$x\rfloor(X Y)=(x \wedge X) Y-\hat{X}(x \wedge Y)$
6. $x\rfloor(X \wedge Y)=(x\rfloor X) \wedge Y+\hat{X} \wedge(x\rfloor Y)$
$x \wedge(X\rfloor Y)=(x\rfloor X)\rfloor Y+\hat{X}\rfloor(x \wedge Y)$
7. $\left.x\rfloor\left(x_{1} x_{2} \ldots x_{p}\right)=\sum_{k=1}^{p}(-1)^{k-1} x_{1} x_{2} \ldots(x\rfloor x_{k}\right) \ldots x_{p}$
8. $\left.x\rfloor\left(x_{1} \wedge x_{2} \wedge \ldots \wedge x_{p}\right)=\sum_{k=1}^{p}(-1)^{k-1} x_{1} \wedge x_{2} \ldots \wedge(x\rfloor x_{k}\right) \ldots \wedge x_{p}$
9. $x_{1}, x_{2}, \ldots, x_{p}$ are pairwise orthogonal $\Rightarrow \prod_{i=1}^{p} x_{i}=\wedge_{i=1}^{p} x_{i}$
10. $x X-\hat{X} x=2 x\rfloor X$ and $x X+\hat{X} x=2 x \wedge X$
11. $\forall_{x \in V}(x \wedge A=0) \Leftrightarrow\left(A \in \mathbb{K} e_{M}\right.$, if $|M|$ is finite, and otherwise $\left.A=0\right)$.

Assume \mathbb{K} is a field or the weaker condition $\mu e_{i}^{2}=0 \Rightarrow\left(\mu=0\right.$ or $\left.e_{i}^{2}=0\right)$ for $i \in M, \mu \in \mathbb{K}$. Then
$\left.\forall_{x \in V}(x\rfloor A=0\right) \Leftrightarrow A \in \mathcal{G}\left(V_{0}\right)$, where V_{0} is the radical or kernel of B. (NB: Always $\left.\mathbb{K} \subseteq \mathcal{G}\left(V_{0}\right)\right)$
12. $\left(x_{1} \wedge x_{2} \ldots \wedge x_{r}\right) \cdot\left(y_{r} \wedge \ldots \wedge y_{2} \wedge y_{1}\right)=\Sigma_{\sigma} s_{\sigma}\left(x_{1} \cdot y_{\sigma(1)}\right) \ldots\left(x_{r} \cdot y_{\sigma(r)}\right)$
where summation is over all permutations σ of $\{1, \ldots, r\}$.
13. Factor expansion of $x_{\wedge K}: \quad$ Let $X=x_{\wedge K}$ and $B \in \Lambda_{s}(V)$. If $\left.\tau_{H}=\alpha(H, K \backslash H)\left(B \cdot x_{\wedge H}\right) \in \mathbb{K}^{*}\right)$, then

$$
B\rfloor X=\Sigma_{H \subseteq K,|H|=s} \tau_{H} x_{\wedge K \backslash H}
$$

$\left.{ }^{*}\right) \alpha$ is from definition 2.1: $\alpha(H, J)=\Pi(-1)$ for $(h, j) \in H \times J$ and $h>j$

Determinant Theorem 5.3. Let $f: V \rightarrow V$ be linear mapping.

1. If V has a finite basis, then the determinant $\operatorname{det}(f)$ is defined by $F\left(e_{M}\right)=\operatorname{det}(f) e_{M}$ independent of basis.
2. Moreover $(f \circ g)_{\wedge}=f_{\wedge} \circ g_{\wedge}, \operatorname{det}(f \circ g)=\operatorname{det}(g) \operatorname{det}(f)$, and $\operatorname{det}\left(f^{-1}\right) \operatorname{det}(f)=1$ when fis bijective.
3. Assume $m=|M|, M=\{1, \ldots, m\}$ and $f\left(a_{s}\right)=\Sigma_{i} \theta_{s}^{i} a_{i}$ in some basis $\left(a_{i} \mid i \in M\right)$. Then $\operatorname{det}(f)=\Sigma_{\sigma} \operatorname{sign}(\sigma)\left(\theta_{\sigma(1)}^{1} \ldots \theta_{\sigma(m)}^{m}\right)$, where summation is over all permutations σ of M.

Automorphism Theorem 5.4. Let $f: V \rightarrow V$ be linear mapping, such that $f(x)^{2}=B(x, x) 1_{A}$. Then f has two universal extensions:
To an outermorphism $f_{\wedge}: \Lambda(V) \rightarrow \Lambda(V)$, and to Clifford algebra isomorphism $F: C \ell_{V}(B) \rightarrow C \ell_{V}(B)$.
Assume $B(f(x), f(y))=B(x, y)$, or \mathbb{K} is a field not of characteristic 2. Then f_{\wedge} is called the universal extension of f to $\mathcal{G}(B, V)$, as
$F=f_{\wedge}$, and thus is an outermorphism, and furthermore grade preserving, an orthogonal isomorphy, an isomorphy for \rfloor and \llcorner, and commutes with the three main involutions.

Anti-automorphism Theorem 5.5. Let $f: V \rightarrow$ Vbe linear mapping, such that $f(x)^{2}=B(x, x) 1_{A}$. Then f has two universal anti-extensions:
To an anti-outermorphism $f_{\lambda}^{\tau}: \Lambda(V) \rightarrow \Lambda(V)$, and to Clifford algebra anti-isomorphism $F^{\tau}: C \ell_{V}(B) \rightarrow C \ell_{V}(B)$.
Assume $B(f(x), f(y))=B(x, y)$, or \mathbb{K} is a field not of characteristic 2. Then f_{\wedge}^{τ} is called the universal anti-extension of f to $\mathcal{G}(B, V)$, as

1. $F^{\tau}=f_{\wedge}^{\tau}$, and thus is an anti-outermorphism, grade preserving, an orthogonal isomorphism and commutes with the three main involutions. Furthermore $\left.F^{\tau}(X\rfloor Y\right)=F^{\tau}(Y)\left\lfloor F^{\tau}(X)\right.$ and $F^{\tau}\left(Y\lfloor X)=F^{\tau}(X)\right\rfloor F^{\tau}(Y)$.
2. If V has a finite basis, then $F^{\tau}\left(e_{M}\right)=(-1)^{|M|(|M|-1) / 2} \operatorname{det}(f) e_{M}$.

Theorem 5.6. Assume B is regular and \mathbb{K} is a field of characteristic $\neq 2$. Then
A is universal in $\mathcal{A}(V, B) \Leftrightarrow A$ has a main automorphism

Definition 5.7. A list of elements in a module is linear independent, if the only (finite) linear combination of the elements giving zero is that with zero factors. Linear dependent means not linear independent.
Obviously holds: A list of elements is linear independent \Leftrightarrow every finite sublist is linear independent

Theorem 5.8. Let H be finite. Then
$\mathrm{A}:\left(x_{h} \mid h \in H\right)$ is linear independent $\Leftrightarrow \mathrm{B}: x_{\wedge H}$ is linear independent $\Leftrightarrow \mathrm{C}:\left(x_{\wedge K} \mid K \subseteq H\right)$ is linear independent

Corollary 5.9. $S=\left(x_{1}, x_{2} \ldots, x_{p}\right)$ is linear independent $\Leftrightarrow S_{\wedge}=x_{1} \wedge x_{2} \wedge \ldots \wedge x_{p}$ is linear independent

Corollary 5.10. Allow $H_{0} \subseteq M$ to be infinite. Then
$\left(x_{h} \mid h \in H_{0}\right)$ is linear independent $\Leftrightarrow\left(x_{\wedge K} \mid K \subseteq H_{0}, K\right.$ finite $)$ is linear independent

Definition 5.10. If U is a submodule of V, then set $\Lambda(U)=\operatorname{span}\left\{\wedge_{i=0}^{m} U \mid m \in \mathbb{N}\right\}$, which obviously is the Grassmannalgebra generated by U.
Also set $\Lambda_{>0}(U)=\operatorname{span}\left\{\wedge_{i=1}^{m} U \mid m \in \mathbb{N}\right\}$.

Theorem 5.11. Let $A=a_{\wedge H}$ be a blade.
Define modules $V_{A}=\{x \in V \mid x \wedge A=0\}, V_{A \perp}=\left\{x \in V \mid \forall_{h \in H} x \cdot a_{h}=0\right\}$ and set $A^{\prime \prime}=\Lambda\left(V_{A}\right), A^{\perp}=\Lambda_{>0}\left(V_{A \perp}\right)$.
Obviously span $\left\{a_{h} \mid h \in H\right\} \subseteq V_{A}$ implying $\Lambda\left(\left\{\operatorname{span}\left\{a_{h} \mid h \in H\right\}\right) \subseteq A^{\prime \prime}\right.$. Moreover also $V_{1}=\{0\}$ and $V_{1_{\perp}}=V$ and $1^{1 \prime}=\{0\}, 1^{\perp}=\Lambda_{>0}(V)$.
Omitting ॥ like in $X \subseteq A$ instead of $X \subseteq A^{\|}$can be used, if it is clear that A means an algebra and not a blade.
Inclusions like $X \subseteq A^{\prime \prime}$ or $X \subseteq A^{\perp}$ may be used for elements, as in $e_{1} \subseteq A^{\prime \prime}$ meaning $\left\{e_{1}\right\} \subseteq A^{\prime \prime}$
Then

1. $X \in \operatorname{span}\left\{a_{\wedge H_{1}}, \ldots, a_{\wedge H_{k}} \mid \forall_{h \in H} H_{h} \subseteq H\right\} \Rightarrow X \subseteq A^{\prime \prime}$

NB : The opposite inclusion is true, if V is a vectorspace; but not generally for modules.
2. $B\rfloor A \subseteq A^{\prime \prime}$
3. $C\rfloor A=C A$, when $C \subseteq A^{\prime \prime}$
4. $\left.A^{2}=A\right\rfloor A=A \cdot A$ and A is invertible $\Leftrightarrow A \cdot A$ invertible $\Rightarrow A^{-1}=A /(A \cdot A)$
5. Assume A is invertible. Then $\operatorname{span}\left\{a_{h} \mid h \in H\right\}=V_{A}$.

NB: In Corollary 6.2.5 is proved: A invertible $\Rightarrow V=V_{A} \oplus V_{A \perp}$

Lemma 5.12. Let A be a blade. Then

1. If $C \subseteq A^{\prime \prime}$:
$(C\rfloor B) A=C \wedge(B A)$
$(C\rfloor B)\rfloor A=C \wedge(B\rfloor A)$
$(C \wedge B) A=C\rfloor(B A)$
$(C B)\rfloor A=C(B\rfloor A)$
2. If $C \subseteq \mathbb{K}+A^{\perp}$:
$(C\rfloor B) A=C\rfloor(B A)$
$(C\rfloor B) \wedge A=C\rfloor(B \wedge A)$
$(C \wedge B) A=C \wedge(B A)$
$(C B) \wedge A=C(B \wedge A)$

Chapter 6 Geometric transformations

Theorem 6.1. For a h-blade A assume $\rho=A \cdot A$ is invertible, thus $A^{-1}=\rho^{-1} A$.
Define the projection on A as $\left.\left.P_{A}(X)=P(X)=(X\rfloor A\right)\right\rfloor A^{-1}$.

1. Then P is grade preserving,
2. $P(X)=(X\rfloor A) A^{-1}, \quad P(X)=\rho^{-1} A\left(A\lfloor X)=\rho^{-1} A\lfloor(A\lfloor X)\right.$
3. $X \subseteq A \Rightarrow P(X)=X, P(X) \subseteq A, P^{2}(X)=P(X)$
4. $P(\Lambda(V))=A^{\prime \prime}, P(V)=V_{A}, P\left(A^{\perp}\right)=\{0\}$.
5. P is symmetric, $X \cdot P(Y)=P(X) \cdot Y$
6. Moreover P is an outermorphism.

Corollary 6.2. Define the rejection of X by A as $Q_{A}(X)=Q(X)=X-P_{A}(X)$. Then

Corollary 6.3. Define the projection along A, \mathcal{P}^{A}, as the extension of $Q_{A}(x)$ by outermorphism. Then \mathcal{P}^{A} is grade preserving, and

1. $\left.\mathcal{P}^{A}(X)=\mathcal{P}(X)=A^{-1}\right\rfloor(A \wedge X)=A^{-1}(A \wedge X)=(X \wedge A) A^{-1}=(X \wedge A)\left\lfloor A^{-1} \subseteq A^{\perp}\right.$
2. $X \subseteq A^{\perp} \Rightarrow \mathcal{P}(X)=X, \mathcal{P}(X) \subseteq A^{\perp}, \mathcal{P}^{2}(X)=\mathcal{P}(X), \mathcal{P}\left(A^{\prime \prime}\right)=\{0\}$, and $P_{A} \circ \mathcal{P}^{A}=\mathcal{P}^{A} \circ P_{A}=0$
3. Symmetry $X \cdot \mathcal{P}(Z)=\mathcal{P}(X) \cdot Z$

Theorem 6.4 Projection P_{A}^{B} on A along B (with $(A \wedge B)^{\perp}$ fixed). Assume \mathbb{K} is a field not of characteristic 2 .
For a r-blade A and a s-blade B let $C=A \wedge B$ and assume C is invertible and set $\eta=(B \wedge A) \cdot C$. Then $C^{-1}=(-1)^{r s} \eta^{-1} C$ and

1. $V=V_{A} \oplus V_{B} \oplus V_{\perp C}$ as direct sum of vectorspaces, and this defines projections. P_{A}^{B} is the projection on $V_{A} \oplus V_{\perp C}$ along V_{B}.
2. P_{A}^{B} extended by outermorphism gives $\left.\left.P_{A}^{B}(X)=\eta^{-1}(A\rfloor C\right)\right\rfloor(B \wedge X)$
3. $X \subseteq \Lambda\left(V_{A}+V_{\perp C}\right) \Rightarrow P(X)=X, X \subseteq B \Rightarrow P(X)=0, P(X) \subseteq \Lambda\left(V_{A}+V_{\perp C}\right), P^{2}(X)=P(X), P_{A}^{B} \circ P_{B}^{A}=P_{B}^{A} \circ P_{A}^{B}=\mathcal{P}^{C}$,
$P_{B}^{A}+P_{A}^{B}-\mathcal{P}^{C}=\mathrm{id}_{\Lambda(V)}$

Theorem 6.5. For a h-blade A assume $\rho=A \cdot A$ is invertible, such that $A^{-1}=\rho^{-1} A$.
Define the reflection along A by linearity and
$\mathcal{R}^{A}(X)=\mathcal{R}(X)=(-1)^{h r} A X A^{-1}$, when $\operatorname{grade}(X)=r$. Then

1. $\mathcal{R}^{A}(x)=\hat{A} x A^{-1}$
$\mathcal{R}(x)=x-2 P(x)$
$\mathcal{R}(P(x))=-P(x)$ and $\mathcal{R}(Q(x))=Q(x)$ justify the words "along A ".
2. Also $\mathcal{R}^{2}(X)=X$, and $\mathcal{R}(X) \cdot \mathcal{R}(Y)=X \cdot Y$.
3. Moreover \mathcal{R}^{A} is a Clifford algebra isomorphism and universal extension of its restriction to V.
\mathcal{R} is e.g. grade preserving and an outermorphism, as the Automorphism Theorem 5.4 apply to \mathcal{R}.
4. Also $\mathcal{R}(P(X))=P(\hat{X}), \mathcal{R}\left(\mathcal{P}^{A}(X)\right)=\mathcal{P}^{A}(X), \mathcal{R}$ is symmetric, $\mathcal{R}(X) \cdot Y=X \cdot \mathcal{R}(Y)$
5. If V has a finite basis, then $\operatorname{det}\left(\mathcal{R}^{A}\right)=(-1)^{h}$

Corollary 6.6. Define the reflection in A as $R_{A}(X)=R(X)=\mathcal{R}^{A}(\hat{X})$. Then

1. $R_{A}(X)=(-1)^{h r} A \hat{X} A^{-1}$ and, if $x \in V$, then
$R_{A}(x)=-\mathcal{R}^{A}(x)=-\hat{A} x A^{-1}$
$R(x)=-x+2 P(x)$
$R(P(x))=P(x)$ and $R(Q(x))=-Q(x)$ supports the words 'in A '.
2. Also $R^{2}(X)=X$, and $R(X) \cdot R(Y)=X \cdot Y$.
3. Moreover R_{A} is a Clifford algebra isomorphism and universal extension of its restriction to V.
R is e.g. grade preserving and an outermorphism, as the Automorphism Theorem 5.4 apply to R .
4. $R(P(X))=P(X), \quad \mathcal{R}\left(\mathcal{P}^{A}(X)\right)=\mathcal{P}^{A}(\hat{X}), R^{2}(X)=X, R$ is symmetric, $R(X) \cdot Y=X \cdot R(Y)$
5. If V has a finite basis, then $\operatorname{det}\left(R_{A}\right)=(-1)^{h+|M|}$

Definition 6.7 A versor of order hor a h-versor, $U=u_{1} \ldots u_{h}$, as a product of invertible elements $u_{i} \in V$.

1. As $U^{-1}=u_{h}^{-1} \ldots u_{1}^{-1}$ a versor transformation of $C \ell(B, V)$ is defined by linearity and

$$
S(X)=S_{U}(X)=(-1)^{h r} U X U^{-1} \text {, when } \operatorname{grade}(X)=r, \text { e.g. } \quad S(x)=\hat{U} x U^{-1}
$$

1. As $S_{U}=\mathcal{R}^{u_{1}} \circ \ldots \circ \mathcal{R}^{u_{h}}$ the Automorphism Theorem apply to S_{U}, and, if V has a finite basis, then $\operatorname{det}\left(S_{U}\right)=(-1)^{h}$
2. The Clifford group Γ is the multiplicative group of versors.

Define Γ^{+}, the rotation versors, as the versors of even order, which obviously is a subgroup of Γ of index 2 .
The orthogonal isomorphisms $V \rightarrow V$ is a group under composition ${ }^{\circ}$, the orthogonal group $O(B)$.
The mapping $\Psi: U \rightarrow S_{U}$ is a multiplicative morphism from Γ into the orthogonal group $O(B)$.

Lemma 6.8. The mapping $\Psi: U \rightarrow S_{U}$ is a multiplicative morphism from Γ into the orthogonal group $O(B)$.

Theorem 6.9. Assume \mathbb{K} is a field not of characteristic 2, V has a finite basis and B is regular.

1. Then from the Cartan-Dieudonne theorem follows that any orthogonal isomorphism of V can be expressed as
$S(x)=\hat{U} x U^{-1}$, where U is a h-versor with $h \leq n=\operatorname{dim}(V)$.
2. $\forall_{x \in V} \hat{U} x U^{-1}=\hat{T} x T^{-1}$ imply $T \in \mathbb{K}^{\times} U$.
3. $\Psi: \Gamma \rightarrow O(B)$ is onto $O(B)$ with kernel $\Psi^{-1}\left(\mathrm{id}_{V}\right)=\mathbb{K}^{\times}$

Also Ψ maps Γ^{+}onto $O^{+}(B)$, the orthogonal isomorphisms with determinant 1 called rotations.
4. Moreover, if $\forall_{x \in V} \psi(x)=\hat{T} x T^{-1} \in V$, then T is a versor.

Corollary 6.10. The mapping $\Phi: U \rightarrow U \tilde{U} \in \mathbb{K}^{\times}$is a multiplicative morphism, $\Phi(\Gamma)$ is a multiplicative group, and $\Phi(\Gamma)=\Phi(\Gamma) \mathbb{K}^{\times 2}$.
2. Assume $\mathbb{K}^{\times}=S \times\left(\mathbb{K}^{\times}\right)^{2}$ as direct product of multiplicative subgroups S and $\left(\mathbb{K}^{\times}\right)^{2}$, like e.g. $\mathbb{R}^{\times}=\{ \pm 1\} \times\left(\mathbb{R}^{\times}\right)^{2}$ or
$\mathbb{C}^{\times}=\{1\} \times\left(\mathbb{C}^{\times}\right)^{2}$.
Then each $U \in \Gamma$ can be normalized as $t U$, such that $\Phi(t U) \in S$, and t is unique apart from a factor ± 1.
Define $\operatorname{pin}(B)=\Phi^{-1}(S)$ and $\operatorname{spin}(B)=\operatorname{pin}(B) \cap \Gamma^{+}, \operatorname{pin}^{+}(B)=\Phi^{-1}(1)$ and $\operatorname{spin}^{+}(B)=\operatorname{pin}^{+}(B) \bigcap \Gamma^{+}$.
If $U \in \operatorname{pin}(B)$, then $S_{U}(x)=s^{-1} \hat{U} x \tilde{U}$, where $s=\Phi(U) \in S$

Chapter 7 Finer structures in Clifford algebra

Theorem 7.1. Let $\left(a_{i}\right)$ be an orthogonal basis for $V, V_{\kappa}=V \oplus \mathbb{K} a_{\kappa}, a_{\kappa}$ orthogonal to $V, a_{\kappa}^{2}=\varepsilon$ invertible, and B_{κ} the extension of B to V_{κ}.
Define a linear mapping $f: V \rightarrow C \ell\left(B_{K}\right)^{+}$by $u \rightarrow u a_{\kappa}$. Then f extends uniquely to an algebra isomorphism $F: C \ell(-\varepsilon B) \rightarrow C \ell\left(B_{K}\right)^{+}$.

Definition 7.2. An algebra A is called simple, if A has no twosided ideals other than 0 and A.
The center $Z=Z(A)$ of an algebra A consists of the elements commuting with all the elements of A.

Theorem 7.3. Assume \mathbb{K} is a field of characteristic $\neq 2$. Then,
if $|M|$ is finite and odd, then $Z=Z(C \ell(B))=\mathbb{K} e_{M}+\mathcal{G}\left(V_{0}\right)^{+}$, and otherwise $Z=\mathcal{G}\left(V_{0}\right)^{+}$, where V_{0} is the radical or

kernel of B.

Lemma 7.4. For algebra A and $f \in A$ assume $f^{2}=f$. Then

1. $(1-f)^{2}=(1-f)$ and $f(1-f)=0$.
2. $I_{-}=A f$ is a left ideal.
3. $P_{-}: X \rightarrow X f$ is an algebraic projection onto I_{-}, such that $P_{-}^{2}=P_{-},\left(1-P_{-}\right)^{2}=\left(1-P_{-}\right)$and $P_{-}\left(1-P_{-}\right)=0$ with $1=\mathrm{id}_{V}$.

Moreover $X \in I_{-} \Rightarrow P_{-}(X)=X$
4. If $f \in Z(A)$, then I_{-}is as a twosided ideal, and $P_{-}: A \rightarrow I_{-}$is an algebra homomorphism.

As $(1-f)$ has the same properties as those mentioned of f, it give likewise rise to objects $I_{+}=1-I_{+}$and $P_{+}=1-P_{-}$.
Analogous statements to (1-3) holds and furthermore
5. $I_{-} \oplus I_{+}=A$

Theorem 7.5. Assume \mathbb{K} is a field of characteristic $\neq 2$ and B is regular. Then

1. If $|M|$ is even or infinite, then $C \ell_{V}(B)$ is simple.
2. Assume $|M|$ finite and odd. Then

I is a non-trivial ideal $\Leftrightarrow \exists_{\lambda}: I=C \ell(B)\left(1+\lambda e_{M}\right)$ and $\lambda^{2} e_{M}^{2}=1$.
3. Assume $|M|$ finite and odd, and $\lambda^{2} e_{M}^{2}=1$. Then
(3a) $f_{ \pm}=\left(1 \pm \lambda e_{M}\right) / 2 \in Z(C \ell(B)), f_{ \pm} f_{\mp}=0$ and $f_{ \pm}^{2}=f_{ \pm}$.
This gives projections and algebra homomorphisms $P_{ \pm}(X)=X f_{ \pm}$onto proper ideals $I_{ \pm}=P_{ \pm}(C \ell(B))$, such that $P_{-}+P_{+}=\operatorname{Id}_{C \ell(B)}, \quad P_{-} P_{+}=0, P_{ \pm}^{2}=P_{ \pm}, \quad$ and $\quad I_{-} \oplus I_{+}=C \ell(B)$.
(3b) $P_{ \pm}(X) \cdot Y=X \cdot P_{ \pm}(Y)$
(3d) $C \ell(B)^{+}$isomorphic to each ideals $I_{ \pm}$by the restriction of $P_{ \pm}$to $C \ell(B)^{+}$.
(3e) $C \ell(B)^{+}$and $I_{ \pm}$are all simple.
(3f) The only non-trivial ideal in $\mathrm{Cl}_{V}(B)$ are I_{-}and I_{+}.

Theorem 7.6. Assume B is regular and \mathbb{K} is a field of characteristic $\neq 2$, that $|M|$ is finite >1 and odd, and also that $\lambda \in \mathbb{K}$ can be found, such that $\lambda^{2} e_{M}^{2}=1$. Then

1. In $\mathcal{A}(V, B)$ exists besides $C \ell_{V}(B)$ only the algebras $U_{ \pm}=C \ell(B) / I_{ \pm}$.
2. If $\tilde{e_{M}}=e_{M}$, then $C \ell(B) / I_{ \pm}$has reversion and no conjugation.

Otherwise, if $\overline{e_{M}}=e_{M}$, then $C \ell(B) / I_{ \pm}$has conjugation and no reversion.

Lemma 7.7. Let $x_{i} \in V$, then $x_{1} x_{2} \ldots x_{p}-x_{1} \wedge x_{2} \wedge \ldots \wedge x_{p} \in \Lambda_{<p}(V)$.

Theorem 7.8. Let $\left(x_{i} \mid i \in I\right)$ be linear independent in V.

1. Then ($x_{K} \mid K \subseteq I, K$ finite) is linear independent.
2. Assume ($x_{i} \mid i \in I$) is a basis for V, and $K \subseteq I$, K finite.

Then the quantization transformation $f: \mathcal{G}(V) \rightarrow \mathcal{G}(V)$ is well-defined by linearity and $f\left(x_{\wedge K}\right)=x_{K}$.
Moreover $\left(x_{K}\right)$ is a basis for $\mathcal{G}(V)$.

Definition 7.9. In $C \ell(B)$ define parity of X by $\operatorname{par}(X)=p \Leftrightarrow \operatorname{grade}(X) \equiv p(\bmod 2)$.
Also set $C \ell(B)^{-}=\{X \mid \operatorname{par}(X)=1\}$ and $C \mathcal{C}(B)^{+}=\{X \mid \operatorname{par}(X)=0\}$
Parity makes $C \ell(B)$ a graded algebra: $\quad \operatorname{par}(X)=r$ and $\operatorname{par}(Y)=s \Rightarrow \operatorname{par}(X Y)=r+s \bmod (2)$.

Definition 7.10. To every Clifford algebra $C \ell(B, V)$ is associated a twisted algebra $C \ell(B, V)^{\mathrm{tw}}$ in the same linear space with multiplication defined by linearity and $X^{\tau} Y=(-1)^{r s} X Y$, when $\operatorname{par}(X)=r$ and $\operatorname{par}(Y)=s$

1. This gives an algebra structure, such that $x \tau x=-x^{2}$ for $x \in V$. The twisted of the twisted algebra is the original.
2. The universal extension of id_{V} is an algebra isomorphism $F: C \ell(-B, V) \rightarrow C \ell(B, V)^{\mathrm{tw}}$.

Chapter 8 Chevalley's construction of Clifford algebras from tensor algebras

Theorem 8.1. Let $\mathcal{T}=\mathcal{T}(V, \otimes)$ be the tensor algebra over V. For any algebra A over \mathbb{K} and any linear mapping $\tau: V \rightarrow A$, there is a unique algebra morphism $\mathrm{T}: \mathcal{T} \rightarrow A$ that extends τ.

Definition 8.2. Let $\mathcal{I}=\mathcal{I}(V, B)$ be the two-sided ideal in $\mathcal{T}=\mathcal{T}(V)$ generated by $\mathcal{S}=\left\{x \otimes x-B(x, x) 1_{\mathcal{T}} \mid x \in V\right\}$.
The Clifford algebra $C C \ell_{V}(B)$ is then defined as the quotient algebra $C C \ell=\mathcal{T} / \mathcal{I}$ together with $\hat{\pi}: \mathcal{T} \rightarrow C C l$ the canonical algebra morphism.

Definition 8.3. Let $\mathcal{K}(V, B)$ be the category of linear mappings f from V into an algebra A, such that $f(x)^{2}=B(x, x) 1_{A}$.
A mapping $\omega: V \rightarrow U$ in $\mathcal{K}(V, B)$ is said to be universal, if for every linear mapping $f: V \rightarrow A$ in $\mathcal{K}(V, B)$, there is a unique algebra morphism $F: U \rightarrow A$ such that $F \circ \omega=f$. (i.e. $f: V \xrightarrow{\omega} U \xrightarrow{F} A$)

Theorem 8.4.

1. $\pi=\left.\hat{\pi}\right|_{V}$ from definition 8.2 is a universal object in $\mathcal{K}(V, B)$.
2. Assume B is symmetric.

Then $\pi: V \rightarrow C C l$ is injective and has an extension $G: C \ell_{V}(B) \rightarrow C C l$ to an algebra isomorphism, and therefore $G\left(1_{C \ell_{V}(B)}\right)=1_{C C l}$.
Therefore a Cliford algebra in the version presented in definition 1.1 is also a Chevalley Cliford algebra.

